某中學(xué)高三年級共有學(xué)生1200人,一次數(shù)學(xué)考試的成績(試卷滿分150分)服從正態(tài)分布N(100,σ2),統(tǒng)計結(jié)果顯示學(xué)生考試成績在80分到100分之間的人數(shù)約占總?cè)藬?shù)的
1
3
,則此次考試成績不低于120分的學(xué)生約有
 
人.
考點(diǎn):正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義
專題:計算題,概率與統(tǒng)計
分析:利用正態(tài)分布曲線的對稱性,確定成績不低于120分的學(xué)生約為總?cè)藬?shù)的
1
2
-
1
3
=
1
6
,即可求得成此次考試成績不低于120分的學(xué)生數(shù).
解答: 解:∵成績ξ~N(100,σ2),
∴其正態(tài)曲線關(guān)于直線x=1000對稱,
又∵成績在80分到100分之間的人數(shù)約占總?cè)藬?shù)的
1
3
,
由對稱性知:成績不低于120分的學(xué)生約為總?cè)藬?shù)的
1
2
-
1
3
=
1
6
,
∴此次考試成績不低于120分的學(xué)生約有:
1
6
×1200=200人.
故答案為:200.
點(diǎn)評:本小題主要考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E、F分別為棱AD、AB的中點(diǎn).求證:EF∥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足關(guān)系anan+1=1-an+1(n∈N*),且a2014=2,則a2012=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的有
 

(1)若不等式(m+n)(
a
m
+
1
n
)≥25對任意正實(shí)數(shù)m,n恒成立,則正實(shí)數(shù)a的最小值為16.
(2)命題“?x>1,2x-a>0”的否定為“?x>1,2x-a<0”
(3)在一個2×2列聯(lián)表中,計算得K2=13,則有99%的把握確定這兩個變量間有關(guān)系.
(4)函數(shù)f(x)=sinx-x的零點(diǎn)個數(shù)有三個.
臨界值表:
P(k2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一個邊長為3,4,5的直角三角形繞斜邊旋轉(zhuǎn)一周得到一個旋轉(zhuǎn)體,問該旋轉(zhuǎn)體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極點(diǎn)到直線ρ(cosθ-sinθ)=2的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,m、n表示兩條不同的直線,α、β、γ表示三個不同的平面:
①若m⊥α,n∥α,則m⊥n;  
②若α⊥γ,β⊥γ,則α∥β;
③若m∥α,n∥α,則m∥n;  
④若α∥β,β∥γ,m⊥α,則m⊥γ;
正確的命題序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,以等腰直角三角形ABC斜邊BC上的高AD為折痕.使△ABD和△ACD折成互相垂直的兩個平面,則∠BAC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-|x|(x∈[-2,2])的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案