已知橢圓E:+=1(a>b>0),以拋物線y2=8x的焦點(diǎn)為頂點(diǎn),且離心率為.
(1)求橢圓E的方程;
(2)若F為橢圓E的左焦點(diǎn),O為坐標(biāo)原點(diǎn),直線l:y=kx+m與橢圓E相交于A、B兩點(diǎn),與直線x=-4相交于Q點(diǎn),P是橢圓E上一點(diǎn)且滿足=+,證明·為定值,并求出該值.
(1)+=1 (2),證明見解析
解析解:(1)拋物線y2=8x的焦點(diǎn)為(2,0),
又橢圓以拋物線焦點(diǎn)為頂點(diǎn),
∴a=2,
又e==,
∴c=1,∴b2=3.
∴橢圓E的方程為+=1.
(2)由(1)知,F(-1,0),
由
消去y,得(3+4k2)x2+8kmx+4m2-12=0.
∵l與橢圓交于兩點(diǎn),
∴Δ=(8km)2-4(3+4k2)(4m2-12)>0,
即m2<4k2+3.
設(shè)A(x1,y1),B(x2,y2),
則x1、x2是上述方程的兩個(gè)根,
∴x1+x2=-,x1·x2=,
又y1+y2=kx1+m+kx2+m
=k(x1+x2)+2m
=
∴=+=(-,),
由點(diǎn)P在橢圓上,得+=1.
整理得4m2=3+4k2,
又Q(-4,-4k+m),
∴=(-3,-4k+m).
∴·=(-,)·(-3,m-4k)
=+
=
=.
即·為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的兩個(gè)焦點(diǎn)是)和,并且經(jīng)過(guò)點(diǎn),拋物線的頂點(diǎn)E在坐標(biāo)原點(diǎn),焦點(diǎn)恰好是橢圓C的右頂點(diǎn)F.
(1)求橢圓C和拋物線E的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點(diǎn)A、B,l2交拋物線E于點(diǎn)G、H,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,若,且.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)已知定點(diǎn),若斜率為的直線過(guò)點(diǎn)并與軌跡交于不同的兩點(diǎn),且對(duì)于軌跡上任意一點(diǎn),都存在,使得成立,試求出滿足條件的實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線C1:x2+by=b2經(jīng)過(guò)橢圓C2:+=1(a>b>0)的兩個(gè)焦點(diǎn).
(1)求橢圓C2的離心率;
(2)設(shè)點(diǎn)Q(3,b),又M,N為C1與C2不在y軸上的兩個(gè)交點(diǎn),若△QMN的重心在拋物線C1上,求C1和C2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,線段OF1、OF2的中點(diǎn)分別為B1、B2,且△AB1B2是面積為4的直角三角形.
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過(guò)B1作直線交橢圓于P、Q兩點(diǎn),使PB2⊥QB2,求△PB2Q的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,設(shè)P是拋物線C1:x2=y上的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓C2:x2+(y+3)2=1的兩條切線,交直線l:y=-3于A、B兩點(diǎn).
(1)求圓C2的圓心M到拋物線C1準(zhǔn)線的距離;
(2)是否存在點(diǎn)P,使線段AB被拋物線C1在點(diǎn)P處的切線平分?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
平面內(nèi)與兩定點(diǎn)、()連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上、兩點(diǎn)所成的曲線C可以是圓、橢圓或雙曲線.求曲線C的方程,并討論C的形狀與m值得關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知線段AB的兩個(gè)端點(diǎn)A,B分別在x軸、y軸上滑動(dòng),|AB|=3,點(diǎn)M滿足2=.
(1)求動(dòng)點(diǎn)M的軌跡E的方程.
(2)若曲線E的所有弦都不能被直線l:y=k(x-1)垂直平分,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com