精英家教網(wǎng)如圖,已知直線l與拋物線x2=4y相切于點P(2,1),且與x軸交于點A,O為坐標原點,定點B的坐標為(2,0).
(1)若動點M滿足
AB
BM
+
2
|
AM
|
=0,求動點M的軌跡Q;
(2) F1,F(xiàn)2是軌跡Q的左、右焦點,過F1作直線l(不與x軸重合),l與軌跡Q相交于C,D,并與圓x2+y2=3相交于E,F(xiàn).當
F2E
F2F
,且λ∈[
2
3
,1]時,求△F2CD的面積S的取值范圍.
分析:(1)由題意直線l與拋物線x2=4y相切于點P(2,1),且與x軸交于點A,利用導數(shù)的幾何含義得到直線的方程,進而求出點A的坐標,利用動點M滿足
AB
BM
+
2
|
AM
|
=0,利用求動點軌跡的直接法即可求解;
(2)由題意設出直線l的方程,把它與橢圓及已知的圓的方程方程進行聯(lián)立,利用根與系數(shù)的關系整體代換得到△F2CD的面積用t表示的函數(shù)式子,有已知的λ的范圍得到t的范圍,利用求函數(shù)值域的方法得到三角形的面積的取值范圍.
解答:解:(1)由x2=4y得y=
1
4
x2,∴y′=
1
2
x
∴直線l的斜率為y′|2=1,
故l的方程為y=x-1,∴點A坐標為(1,0),
設M(x,y)則
AB
=(1,0),
BM
=(x-2,y),
AM
=(x-1,y),
AB
BM
+
2
|
AM
|=0得
(x-2)+y•0+
2
(x-1)2+y2
=0
整理,得
x2
2
+y2=1
,
∴動點M的軌跡Q為以原點為中心,焦點在x軸上,長軸長為2
2
,
短軸長為2的橢圓.

(2)設l方程為x=ty-1,E(x1,y1),F(xiàn)(x2,y2
x=ty-1
x2+y2=3
得(t2+1)y2-2ty-2=0
F2E
F2F
=(x1-1,y1)•(x2-1,y2)

=(ty1-2)(ty2-2)+y1y2
=(t2+1)y1y2-2t(y1+y2)+4
=
4
t2+1
-2

F2E
F2F
∈[
2
3
,1]
得t2[
1
3
,
1
2
]

x=ty-1
x2
2
+y2=3
得(t2+2)y2-2ty-1=0設C(x3,y3),D(x4,y4).
SF1CD=
1
2
|F1F2|y3-y4|=|y3-y4|=
8(t2+1)
(t2+2)2
,
設m=t2+1,則S=
8m
(m+1)2
=
8
m+
1
m
+2
,m∈[
4
3
,
3
2
]

S關于m在[
4
3
3
2
]
上是減函數(shù).所以S∈[
4
5
3
,
4
7
6
].
點評:此題考查了導數(shù)的幾何含義,雙曲線的性質,直線方程與橢圓和圓的方程的聯(lián)立及根與系數(shù)的關系,還考查了有定義域求函數(shù)值域的方法,及整體代換的思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直線l與拋物線y=
1
4
x2
相切于點P(2,1),且與x軸交于點A,O為坐標原點,定點B的坐標為(2,0).
(1)若動點M滿足
AB
BM
+
2
|
AM
|=0
,求動點M的軌跡C的方程;
(2)若過點B的直線l'(斜率不等于零)與(1)中的軌跡C交于不同
的兩點E、F(E在B、F之間),且
BE
BF
,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直線l與拋物線x2=4y相切于點P(2,1),且與x軸交于點A,定點B的坐標為(2,0).
(I)若動點M滿足
AB
BM
+
2
|
AM
|=0
,求點M的軌跡C;
(Ⅱ)若過點B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直線l與拋物線y2=x相交于A(x1,y1),B(x2,y2)兩點,與x軸相交于點M,若y1y2=-1,
(1)求證:OA⊥OB;
(2)M點的坐標為(1,0),求△AOB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年山東省兗州市高三第三次模擬考試理科數(shù)學卷 題型:解答題

如圖,已知直線l與拋物線相切于點P(2,1),且與x軸交于點A,O為坐標原點,定點B的坐標為(2,0).

(I) 若動點M滿足,求點M的軌跡C;

(II)若過點B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍

 

查看答案和解析>>

同步練習冊答案