【題目】已知一個正多邊形的每條邊和對角線恰各染成2018種顏色之一,且所有邊及對角線不全同色.若正多邊形中不存在兩色三角形(即三角形的三邊恰被染成兩種顏色),則稱該多邊形的染色是“和諧的”.求最大的正整數(shù) ,使得存在一個和諧的染色正邊形.

【答案】

【解析】

先考慮和諧染色的正邊形的任意一個頂點 .可證明:對于每種顏色,由至多可以引出2016條該種顏色的邊.

否則,設(shè)與頂點相連的邊有相同的顏色(記為 ),于是,兩兩之間連邊的顏色均為.

令頂點為與相連的邊異于顏色的一個頂點(此頂點必然存在,否則,正邊形的所有邊均為顏色 ,與條件矛盾).此時,頂點的連邊兩兩不同色,且均不為顏色 ,這樣至少有2019種顏色,與條件矛盾.

從而,在和諧染色的正多邊形中,任一頂點引出的邊數(shù)為

.

再證明:存在和諧的染色正邊形.

注意到,2017為素數(shù).

故對任意整數(shù) ,及任意整數(shù),均存在唯一的 ,使得.

表示個頂點,其中,,數(shù)字0,1,…,2017表示2018種顏色.

對于頂點 ,當 時,

,

則將 之間的連邊染顏色;

,則將 之間的連邊染色顏色2017.

由2017為素數(shù),知染色方式唯一確定.

下面證明:這樣的染色方式是和諧的.

對于任意三個頂點、,若 、之間的連邊同色,則之間的連邊也必為此種顏色.

事實上,若、、之間的連邊同為顏色2017,則.故 之間的連邊也為顏色2017.

、之間的連邊同為顏色,

.

.

從而,、 之間的連邊也為顏色 .

綜上,滿足條件的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1an=0(nN*),且,成等差數(shù)列.

1)求數(shù)列{an}的通項公式;

2)令bn=(nN*),求數(shù)列{bn}的前n項和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線在第一象限內(nèi)的點到焦點F的距離為

(1)求拋物線的方程;

(2)若直線與拋物線C相交于A,B兩點,與圓相交于DE兩點,O為坐標原點,,試問:是否存在實數(shù)a,使得|DE|的長為定值?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蔬果經(jīng)銷商銷售某種蔬果,售價為每公斤25元,成本為每公斤15元.銷售宗旨是當天進貨當天銷售.如果當天賣不出去,未售出的全部降價以每公斤10元處理完.根據(jù)以往的銷售情況,得到如圖所示的頻率分布直方圖:

(1)根據(jù)頻率分布直方圖計算該種蔬果日需求量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點值代表);

(2)該經(jīng)銷商某天購進了250公斤這種蔬果,假設(shè)當天的需求量為公斤,利潤為元.求關(guān)于的函數(shù)關(guān)系式,并結(jié)合頻率分布直方圖估計利潤不小于1750元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程為,直線,直線 .以極點為原點,極軸為軸的正半軸建立平面直角坐標系.

(1)求直線的直角坐標方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點,直線與曲線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是BC、CD的中點,GEF的中點,現(xiàn)在沿AEAFEF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有( 。

A. 所在平面B. 所在平面

C. 所在平面D. 所在平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗方式為:弧田面積=,弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”指半徑長與圓心到弦的距離之差。現(xiàn)有圓心角為,半徑等于4米的弧田.下列說法正確的是( )

A. “弦”米,“矢”

B. 按照經(jīng)驗公式計算所得弧田面積()平方米

C. 按照弓形的面積計算實際面積為()平方米

D. 按照經(jīng)驗公式計算所得弧田面積比實際面積少算了大約0.9平方米(參考數(shù)據(jù) )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,的三條內(nèi)線段、交于點、用紅、藍兩種顏色對的三條邊線和三條內(nèi)線段染色,使同色的三線不交于一點.證明:在圖中所有的三角形中,至少存在兩個同色三角形,且它的各邊或延長線被另一線截得的兩線段之比的和大于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間;

2)判斷上的零點的個數(shù),并說明理由.(提示:

查看答案和解析>>

同步練習(xí)冊答案