(選修4—1幾何證明選講)如圖,內(nèi)接于,,直線于點C,于點.若的長為          .

【答案】

【解析】直線MN切⊙O于點C,根據(jù)弦切角可知∠BCM=∠A,BE∥MN,

∴∠BCM=∠EBC,∠A=∠EBC.又∠ACB是公共角,∴根據(jù)三角對應(yīng)相等得到△ABC∽△BEC,

,∵AB=AC=6,BC=4,。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4—4:坐標(biāo)系與參數(shù)方程

    以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,已知點的直角坐標(biāo)為,點的極坐標(biāo)為,若直線過點,且傾斜角為,圓為 圓心、為半徑。

   (1)求直線的參數(shù)方程和圓的極坐標(biāo)方程;

   (2)試判定直線和圓的位置關(guān)系。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4—5:不等式選講

    已知函數(shù)

   (1)解關(guān)于的不等式

   (2)若函數(shù)的圖象恒在函數(shù)圖象的上方,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4—4:坐標(biāo)系與參數(shù)方程

    以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,已知點的直角坐標(biāo)為,點的極坐標(biāo)為,若直線過點,且傾斜角為,圓為 圓心、為半徑。

   (1)求直線的參數(shù)方程和圓的極坐標(biāo)方程;

   (2)試判定直線和圓的位置關(guān)系。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4—1:幾何證明選講

D、E分別為△ABC的邊AB、AC上的點,且不與△ABC的頂點重合。已知AE的長為,AC的長為,AD、AB的長是關(guān)于的方程的兩個根。

(1)證明:C、B、D、E四點共圓;

(2)若∠A=90°,,且,求C、B、D、E所在圓的半徑。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選修4—5不等式選講)已知的最大值是        .;

查看答案和解析>>

同步練習(xí)冊答案