(2006•海淀區(qū)一模)函數(shù)y=2cos2(x+
π
3
)
的最小正周期為( 。
分析:利用降冪公式可將y=2cos2(x+
π
3
)
轉(zhuǎn)化為:y=1+cos(2x+
3
),利用余弦函數(shù)的周期公式即可求得答案.
解答:解:∵y=2cos2(x+
π
3
)
=1+cos(2x+
3
),
∴其最小正周期T=
2
=π,
故選B.
點評:本題考查二倍角的余弦公式,考查余弦函數(shù)的周期公式的應用,降冪是關(guān)鍵,考查轉(zhuǎn)化思想,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2006•海淀區(qū)一模)若點P(3,-1)為圓(x-2)2+y2=25的弦AB的中點,則直線AB的方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•海淀區(qū)一模)設全集U={1,2,3,4,5},集合M={1,3,5},集合N={3,4,5},則集合(CUM)∩N等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•海淀區(qū)一模)i是虛數(shù)單位,復數(shù)z=
(1+i)2
1-i
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•海淀區(qū)一模)函數(shù)f(x)=loga(3x-1)(a>0,a≠1)的反函數(shù)的圖象過定點( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•海淀區(qū)一模)已知四棱錐P-ABCD的底面是菱形,∠BCD=60°,PD⊥AD,點E是BC邊的中點,
(Ⅰ)求證:AD⊥平面PDE;
(Ⅱ)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
,
①求點P到平面ABCD的距離;
②求二面角P-AB-C的大小.

查看答案和解析>>

同步練習冊答案