【答案】
分析:(I)欲求出切線方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=0處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
(II)先求出f(x)的導(dǎo)數(shù),根據(jù)f′(x)>0求得的區(qū)間是單調(diào)增區(qū)間,f′(x)<0求得的區(qū)間是單調(diào)減區(qū)間即可;
(III)由(Ⅱ)知,若k>0,則當(dāng)且僅當(dāng)-
≤-1時,函數(shù)f(x)(-1,1)內(nèi)單調(diào)遞增,若k<0,則當(dāng)且僅當(dāng)-
≥1時,函數(shù)f(x)(-1,1)內(nèi)單調(diào)遞增,由此即可求k的取值范圍.
解答:解:(Ⅰ)f′(x)=(1+kx)e
kx,f′(0)=1,f(0)=0,
曲線y=f(x)在點(0,f(0))處的切線方程為y=x;
(Ⅱ)由f′(x)=(1+kx)e
kx=0,得x=-
(k≠0),
若k>0,則當(dāng)x∈(-∞,-
)時,
f′(x)<0,函數(shù)f(x)單調(diào)遞減,
當(dāng)x∈(-
,+∞,)時,f′(x)>0,
函數(shù)f(x)單調(diào)遞增,
若k<0,則當(dāng)x∈(-∞,-
)時,
f′(x)>0,函數(shù)f(x)單調(diào)遞增,
當(dāng)x∈(-
,+∞,)時,
f′(x)<0,函數(shù)f(x)單調(diào)遞減;
(Ⅲ)由(Ⅱ)知,若k>0,則當(dāng)且僅當(dāng)-
≤-1,
即k≤1時,函數(shù)f(x)(-1,1)內(nèi)單調(diào)遞增,
若k<0,則當(dāng)且僅當(dāng)-
≥1,
即k≥-1時,函數(shù)f(x)(-1,1)內(nèi)單調(diào)遞增,
綜上可知,函數(shù)f(x)(-1,1)內(nèi)單調(diào)遞增時,
k的取值范圍是[-1,0)∪(0,1].
點評:本小題主要考查直線的斜率、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)研究曲線上某點切線方程等基礎(chǔ)知識,考查運算求解能力以及分類討論思想.屬于基礎(chǔ)題.