本小題滿分14分)
已知橢圓的左、右焦點分別為F1、F2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點P作此圓的切線,切點為T,且的最小值不小于。
(1)證明:橢圓上的點到F2的最短距離為;
(2)求橢圓的離心率e的取值范圍;
(3)設橢圓的短半軸長為1,圓F2軸的右交點為Q,過點Q作斜率為的直線與橢圓相交于A、B兩點,若OA⊥OB,求直線被圓F2截得的弦長S的最大值。
解:(1)假設橢圓上的任一點P(x0,,y0
則︱PF22=(x0-c)2+y02由橢圓方程
易得︱PF22=x02-2cx0+c2+b2,顯然當 x0=a時,
︱PF2︱最小值為a-c.。。。。。。。。。。。。4分
(2)依題意知
當且僅當取得最小值時,取最小值
,又因為b-c>0,
。。。。8分
(3)依題意Q點的坐標為,則直線的方程為,代入橢圓方程得
,則,。。。。。。。。。。。10分
又OA⊥OB,∴,
,即,直線的方程為
圓心到直線的距離
由圖象可知
 。。。。。。。。。。。。12分
。。。。。。。。。。14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

(本題滿分12分)
已知橢圓(),其左、右焦點分別為、,且、、成等比數(shù)列.
(Ⅰ)若橢圓的上頂點、右頂點分別為、,求證:;
(Ⅱ)若為橢圓上的任意一點,是否存在過點、的直線,使軸的交點滿足?若存在,求直線的斜率;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本小題滿分14分)
已知圓的圓心為,半徑為,圓與橢圓: 有一個公共點(3,1),分別是橢圓的左、右焦點.
(1)求圓的標準方程;
(2)若點P的坐標為(4,4),試探究斜率為k的直線與圓能否相切,若能,求出橢圓和直線的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知橢圓:的離心率為,左焦點為,過點且斜率為的直線交橢圓于兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)在軸上,是否存在定點,使恒為定值?若存在,求出點的坐標和這個定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(1)求動點P的軌跡C的方程;
(2)設M、N是直線l上的兩個點,點E是點F關于原點的對稱點,若·=0,
求 | MN | 的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,橢圓過點,其左、右焦點分別為,離心率是橢圓右準線上的兩個動點,且
(1)求橢圓的方程;
(2)求的最小值;
(3)以為直徑的圓是否過定點?
請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓方程為,拋物線方程為.過拋物線的焦點作軸的垂線,與拋物線在第一象限的交點為,拋物線在點處的切線經過橢圓的右焦點. 
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設為橢圓上的動點,由軸作垂線,垂足為,且直線上一點滿足,求點的軌跡方程,并說明軌跡是什么曲線?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.已知中心在原點O,焦點在軸上,離心率為的橢圓;以橢圓的頂點為頂點構成的四邊形的面積為4.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若A\B分別是橢圓長軸的左.右端點,動點M滿足,直線MA交橢圓于P,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過橢圓的右焦點F作直線交橢圓于M,N兩點,設
(1)求直線的斜率;
(2)設M,N在直線上的射影分別為M1,N1,求的值

查看答案和解析>>

同步練習冊答案