已知f(x)=ax3+x2+cx是定義在R上的函數(shù),f(x)在[-1,0]和[4,5]上是減函數(shù),在[0,2]上是增函數(shù).
(I)求c的值;
(II)求a的取值范圍;
(III)在函數(shù)f(x)的圖象上是否存在一點M(x,y),使得曲線y=f(x)在點M處的切線的斜率為3,若存在,求出點M的坐標;若不存在,說明理由.
【答案】
分析:(I)先求函數(shù)f(x)的導函數(shù)f′(x),由f(x)在[-1,0]上是減函數(shù),在[0,2]上是增函數(shù)知x=0為函數(shù)的一個極值點,由此列方程f′(0)=0即可解得c的值
(II)將函數(shù)f(x)的單調性,轉化為函數(shù)f′(x)的零點分布問題,f(x)在[0,2]上是增函數(shù),在[4,5]上是減函數(shù),說明f′(x)的正零點在[2,4]內(nèi),解不等式即可
(III)假設存在點M(x
,y
)使得曲線y=f(x)在點M處的切線的斜率為3,則f′(x
)=3有解,而根據(jù)(II)問的計算,此方程的判別式小于零,故而無解,故此點不存在
解答:解:(I)對函數(shù)f(x)=ax
3+x
2+cx求導數(shù),得,f′(x)=3ax
2+2x+c
∵f(x)在[-1,0]上是減函數(shù),在[0,2]上是增函數(shù)
∴函數(shù)f(x)在x=0處有極小值,
∴f′(0)=0,即3a×0
2+2×0+c=0
∴c=0
(II)∵f(x)=ax
3+x
2,∴f′(x)=3ax
2+2x
令f′(x)=0,解得
∵f(x)在[0,2]上是增函數(shù),在[4,5]上是減函數(shù)
即f′(x)在[0,2]上大于或等于零,在[4,5]上小于或等于零
∴x
2∈[2,4]
即
∴
∴
(III)假設存在點M(x
,y
)使得曲線y=f(x)在點M處的切線的斜率為3,
則f′(x
)=3,即3ax
2+2x
-3=0,其中△=4+36a
∵
∴-12≤36a≤-6
∴△<0∴3ax
2+2x
-3=0無實數(shù)根
∴f′(x
)=3不成立
∴不存在點M(x
,y
)使得曲線y=f(x)在點M處的切線的斜率為3.
點評:本題考查了導數(shù)在函數(shù)單調性和極值中的應用,函數(shù)與其導函數(shù)的圖象性質間的關系,導數(shù)的幾何意義等知識