已知函數(shù)
(Ⅰ)若x∈[0,π],求f(x)的最大值和最小值;
(Ⅱ)若f(x)=0,求的值.
【答案】分析:f(x)解析式提取4變形后,利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個角的正弦函數(shù),
(Ⅰ)根據(jù)x的范圍求出這個角的范圍,利用正弦函數(shù)的值域即可求出f(x)的最大值和最小值;
(Ⅱ)根據(jù)f(x)=0求出tanx的值,所求式子利用二倍角的余弦函數(shù)公式及兩角和與差的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系化簡,將tanx的值代入計算即可求出值.
解答:解:f(x)=4(sinx-cosx)=4sin(x-),
(Ⅰ)∵x∈[0,π],∴x-∈[-,],
∴-≤sin(x-)≤1,即-2≤4sin(x-)≤4,
則f(x)的最大值為4,最小值為-2;
(Ⅱ)∵f(x)=2sinx-2cosx=0,即tanx=
∴原式====2-
點評:此題考查了兩角和與差的正弦函數(shù)公式,三角函數(shù)的化簡求值,以及正弦函數(shù)的定義域與值域,熟練掌握公式是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013-2014學年湖南省名校高三上學期第一次大聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)

(1)若x=2為的極值點,求實數(shù)a的值;

(2)若上為增函數(shù),求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年黑龍江省哈爾濱三中高二(下)第二次段考數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)若x=e為y=f(x)-2ex-ax的極值點,求實數(shù)a的值
(2)若x是函數(shù)f(x)的一個零點,且x∈(b,b+1),其中b∈N,則求b的值
(3)若當x≥1時,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年湖北省荊州市松滋二中高考數(shù)學限時訓練(解析版) 題型:解答題

(理科)已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對任意的t∈[1,2],若函數(shù)在區(qū)間(t,3)上有最值,求實數(shù)m取值范圍;
(3)求證:ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*
(文科) 已知函數(shù)
(1)若x=-1是f(x)的極值點且f(x)的圖象過原點,求f(x)的極值;
(2)若,在(1)的條件下,是否存在實數(shù)b,使得函數(shù)g(x)的圖象與函數(shù)f(x)的圖象恒有含x=-1的三個不同交點?若存在,求出實數(shù)b的取值范圍;否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:北京市宣武區(qū)2010年高三第一次質(zhì)量檢測數(shù)學(理)試題 題型:解答題

(本小題共13分)

已知函數(shù)

   (I)若x=1為的極值點,求a的值;

   (II)若的圖象在點(1,)處的切線方程為,

(i)求在區(qū)間[-2,4]上的最大值;

(ii)求函數(shù)的單調(diào)區(qū)間.

 

查看答案和解析>>

科目:高中數(shù)學 來源:北京市宣武區(qū)2010年高三第一次質(zhì)量檢測數(shù)學(文)試題 題型:解答題

(本小題共13分)

已知函數(shù)

   (I)若x=1為的極值點,求a的值;

   (II)若的圖象在點(1,)處的切線方程為,求在區(qū)間[-2,4]上的最大值;

   (III)當時,若在區(qū)間(-1,1)上不單調(diào),求a的取值范圍.

 

查看答案和解析>>

同步練習冊答案