在直二面角α-PQ-β中,直角三角形ABC在面α內(nèi),斜邊AB在棱PQ上,若AC與面β成30°的角,則BC與面β所成角為( 。
分析:作CD⊥AB,根據(jù)面面垂直的性質(zhì)定理可知CD⊥β,從而∠CAB=30°,可求出∠CBA,而∠CBA即為BC與面β所成角,從而求出所求.
解答:解:作CD⊥AB,
∵直二面角α-PQ-β
∴CD⊥β
∵AC與面β成30°的角
∴∠CAB=30°
又因直角三角形ABC
∴∠CBA=60°
而∠CBA即為BC與面β所成角
故選C.
點(diǎn)評(píng):本題主要考查了與二面角有關(guān)的立體幾何綜合題,以及直線與平面所成的角,解題的關(guān)鍵是畫(huà)圖理解題意,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:022

在直二面角α-AB-β中, P∈α, Q∈β, PR⊥AB于R, QS⊥AB于S, PQ與β成45°角, 與α成30°角, 則二面角S-PQ-R的余弦值的平方為_(kāi)________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

在直二面角α-PQ-β中,直角三角形ABC在面α內(nèi),斜邊AB在棱PQ上,若AC與面β成30°的角,則BC與面β所成角為


  1. A.
    30°
  2. B.
    45°
  3. C.
    60°
  4. D.
    60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在直二面角α-PQ-β中,直角三角形ABC在面α內(nèi),斜邊AB在棱PQ上,若AC與面β成30°的角,則BC與面β所成角為( 。
A.30°B.45°C.60°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:期中題 題型:單選題

在直二面角α﹣PQ﹣β中,直角三角形ABC在面α內(nèi),斜邊AB在棱PQ上,若AC與面β成30°的角,則BC與面β所成角為 
[     ]
A.30°  
B.45°  
C.60°  
D.60°或120°

查看答案和解析>>

同步練習(xí)冊(cè)答案