過拋物線y2=4x的焦點F且斜率為k(k>0)的直線交拋物線于A、B兩點,若
AF
=4
FB
,則斜率k的值為(  )
A.1B.2C.
2
3
D.
4
3
∵拋物線 C:y2=4x焦點F(1,0),準線x=-1,則直線AB的方程為y=k(x-1)
聯(lián)立方程
y=k(x-1)
y2=4x
可得k2x2-2(2+k2)x+k2=0
設A(x1,y1),B(x2,y2),則x1+x2=
2(2+k2)
k2
,y1+y2=k(x1+x2-2)=
4
k2
•k=
4
k

AF
=(1-x1,-y1)
,
FB
=(x2-1,y2)

AF
=4
FB
,
1-x1=4(x2-1)
y1=-4y2
x1=-4x2+5
y1=-4y2

①②聯(lián)立可得,x2=
3k2-4
3k2
,y2=-
4
3k2
•k=-
4
3k
,代入拋物線方程y2=4x可得
16
9k2
=
3k2-4
3k2
×4
∴9k2=16
∵k>0
∴k=
4
3

故選D
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

傾斜角為
π
4
的直線過拋物線y2=4x的焦點且與拋物線交于A,B兩點,則|AB|=(  )
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=4x的焦點F引兩條互相垂直的直線AB、CD交拋物線于A、B、C、D四點.
(1)求當|AB|+|CD|取最小值時直線AB、CD的傾斜角的大小
(2)求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=4x的焦點F的直線交該拋物線于A,B兩點,O為坐標原點.若|AF|=3,則△AOB的面積為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,點O是坐標原點,若|AF|=5,則△AOB的面積為( 。
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,A、B兩點在準線l上的射影分別為M.N,則∠MFN=( 。

查看答案和解析>>

同步練習冊答案