9.已知偶函數(shù)f(x)在區(qū)間[0,+∞)單調(diào)遞減,則滿足 $f(2x-1)>f(\frac{1}{3})$的實(shí)數(shù)x的取值范圍是( 。
A.($\frac{1}{3}$,$\frac{2}{3}$)B.[$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{1}{2}$,$\frac{2}{3}$)D.[$\frac{1}{2}$,$\frac{2}{3}$)

分析 由偶函數(shù)的性質(zhì)和單調(diào)性以及 $f(2x-1)>f(\frac{1}{3})$,可得|2x-1|<$\frac{1}{3}$,根據(jù)絕對值不等式的解法,解不等式可求范圍.

解答 解:∵偶函數(shù)f(x)滿足 $f(2x-1)>f(\frac{1}{3})$,
∴f(|2x-1|)>f($\frac{1}{3}$),
∵偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞減,
∴|2x-1|<$\frac{1}{3}$,
解得$\frac{1}{3}$<x<$\frac{2}{3}$,
故選A.

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性和單調(diào)性綜合應(yīng)用,即偶函數(shù)對稱區(qū)間上單調(diào)性性質(zhì)的應(yīng)用,解答本題的關(guān)鍵是:將已知不等式轉(zhuǎn)化為|2x-1|<$\frac{1}{3}$.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)=ex+e-x與g(x)=ex-e-x的定義域均為R,則( 。
A.f(x)與g(x)與均為偶函數(shù)B.f(x)為奇函數(shù),g(x)為偶函數(shù)
C.f(x)與g(x)與均為奇函數(shù)D.f(x)為偶函數(shù),g(x)為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=1-$\frac{2}{{2}^{x}+a}$為定義在R上的奇函數(shù).
(1)試判斷函數(shù)的單調(diào)性,并用定義加以證明;
(2)若關(guān)于x的方程f(x)=m在[-1,1]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=logax(a>1)在[2,π]上的最大值比最小值大1.則a等于( 。
A.$\frac{π}{2}$B.2C.$\frac{2}{π}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點(diǎn)P(-2,$\frac{\sqrt{14}}{2}$)在橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,過點(diǎn)P作圓O:x2+y2=2的切線,切點(diǎn)為A,B,若直線AB恰好過橢圓C的左焦點(diǎn)F,則a2+b2的值是(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A={x|x2-3x-4≤0},B={x|x2-2mx+m2-9≤0},C={y|y=2x+b,x∈R}
(1)若A∩B=[0,4],求實(shí)數(shù)m的值;
(2)若A∩C=∅,求實(shí)數(shù)b的取值范圍;
(3)若A∪B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=1-x+{log_2}\frac{1-x}{1+x}$,則$f({\frac{1}{2}})+f({-\frac{1}{2}})$的值為( 。
A.0B.-2C.2D.$2{log_2}\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=2\sqrt{3}sinxcosx+{sin^2}x-{cos^2}x$,
(1)求f(x)的值域;
(2)說明怎樣由y=sinx的圖象得到f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-$\frac{a}{x}-1$.
(1)若曲線y=f(x)存在斜率為-1的切線,求實(shí)數(shù)a的取值范圍;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)函數(shù)g(x)=$\frac{x+a}{lnx}$,求證:當(dāng)-1<a<0時(shí),g(x)在(1,+∞)上存在極小值.

查看答案和解析>>

同步練習(xí)冊答案