【題目】已知F是雙曲線 =1(a>0,b>0)的右焦點,A,B分別為其左、右頂點.O為坐標原點,D為其上一點,DF⊥x軸.過點A的直線l與線段DF交于點E,與y軸交于點M,直線BE與y軸交于點N,若3|OM|=2|ON|,則雙曲線的離心率為(
A.3
B.4
C.5
D.6

【答案】C
【解析】解:如圖,設(shè)A(﹣a,0),M(0,2m),B(a,0),N(0,﹣3m). 則直線AM: ,直線BN:
∵直線AM,BN的交點D(c,y),
,則 ,
∴雙曲線的離心率為5.
故答案為:C.

設(shè)A(﹣a,0),M(0,2m),B(a,0),N(0,﹣3m),則直線AM: ,直線BN: .由直線AM,BN的交點D(c,y),得 ,則 ,即可

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P(2,1)與Q關(guān)于原點O對稱,直線PM,QM相交于點M,且它們的斜率之積是﹣ (Ⅰ)求點M的軌跡C的方程;
(Ⅱ)過P作直線l交軌跡C于另一點A,求DPAO的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n項和,則使得Sn達到最大值的n是(
A.21
B.20
C.19
D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|2x+2|.
(1)解不等式f(x)>5;
(2)若關(guān)于x的方程 =a的解集為空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知D(x0 , y0)為圓O:x2+y2=12上一點,E(x0 , 0),動點P滿足 = + ,設(shè)動點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)若動直線l:y=kx+m與曲線C相切,過點A1(﹣2,0),A2(2,0)分別作A1M⊥l于M,A2N⊥l于N,垂足分別是M,N,問四邊形A1MNA2的面積是否存在最值?若存在,請求出最值及此時k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以A,B,C,D,E,F(xiàn)為頂點的多面體中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.
(Ⅰ)請在圖中作出平面α,使得DEα,且BF∥α,并說明理由;
(Ⅱ)求直線EF與平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 的圖象如圖所示,為了得到g(x)=cos2x的圖象,則只需將f(x)的圖象(
A.向右平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向左平移 個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,BC⊥CD,點P在底面ABCD上的射影為A,BC=CD= AD=1,E為棱AD的中點,M為棱PA的中點.
(1)求證:BM∥平面PCD;
(2)若∠ADP=45°,求二面角A﹣PC﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 =(1,﹣2), =(a,﹣1), =(﹣b,0),其中O為坐標原點,a>0,b>0,若A、B、C三點共線,則 的最小值為

查看答案和解析>>

同步練習(xí)冊答案