已知a為實(shí)數(shù),f(x)=(x2-4)(x-a).
(1)求導(dǎo)數(shù)f′(x);
(2)若f'(-1)=0,求f(x)在[-2,2]上的最大值和最小值.
【答案】分析:(1)f(x)=(x2-4)(x-a)=x3-ax2-4x+4a,能求出導(dǎo)數(shù)f′(x);
(2)由f'(-1)=3+2a-4=0,得a=.由f′(x)=3x2-x-4=0,得x1=-1,,然后分別求出和f(2),由此能得到f(x)在[-2,2]上的最大值和最小值.
解答:解:(1)∵f(x)=(x2-4)(x-a)
=x3-ax2-4x+4a,
∴f′(x)=3x2-2ax-4.
(2)∵f'(-1)=3+2a-4=0,
∴a=.f(x)=(x2-4)(x-
∴由f′(x)=3x2-x-4=0,
得x1=-1,,
=0,
=,
=-

∴f(x)在[-2,2]上的最大值為,
最小值為-
點(diǎn)評:本題考查導(dǎo)數(shù)的概念和利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意導(dǎo)數(shù)的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),f(x)=x3-ax2-9x.
(1)求導(dǎo)數(shù)f'(x);
(2)若f'(-1)=0,求f(x)在[-1,1]上的最大值和最小值;
(3)若f(x)在[-1,1]上是遞減的,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),f(x)=x3-ax2-4x+4a,
(1)求f′(x);
(2)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),f(x)=(x2-4)(x-a).
(Ⅰ)若f′(-1)=0,求f(x)在[-4,4]上的最大值和最小值;
(Ⅱ)若f(x)在(-∞,-2)和[2,+∞)上都是遞增的,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),f(x)=(x2-4)(x-a),f′(x)為f(x)的導(dǎo)函數(shù).
(Ⅰ)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值;
(Ⅱ)若f(x)在(-∞,-2]和[2,+∞)上均單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),f(x)=(x2-4)(x-a).
(1)求導(dǎo)數(shù)f′(x);
(2)若f'(-1)=0,求f(x)在[-2,2]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案