已知函數(shù).
(Ⅰ)當a=3時,求函數(shù)上的最大值和最小值;
(Ⅱ)求函數(shù)的定義域,并求函數(shù)的值域。(用a表示)

(Ⅰ);(Ⅱ)的定義域為的值域為

解析試題分析:(Ⅰ)當時,求函數(shù)上的最大值和最小值,令,變形得到該函數(shù)的單調(diào)性,求出其值域,再由為增函數(shù),從而求得函數(shù)上的最大值和最小值;(Ⅱ)求函數(shù)的定義域,由對數(shù)函數(shù)的真數(shù)大于0求出函數(shù)的定義域,求函數(shù)的值域,函數(shù)的定義域,即的定義域,把的解析式代入后整理,化為關(guān)于的二次函數(shù),對分類討論,由二次函數(shù)的單調(diào)性求最值,從而得函數(shù)的值域.
試題解析:(Ⅰ)令,顯然上單調(diào)遞減,故,
,即當時,,(在時取得)
??????,(在時取得)
(II)由的定義域為,由題易得:,
因為,故的開口向下,且對稱軸,于是:
?當時,的值域為(;
?當時,的值域為(
考點:復合函數(shù)的單調(diào)性;函數(shù)的值域.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

為正實數(shù),函數(shù).
(1)若,求的取值范圍;(2)求的最小值;
(3)若,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某廠生產(chǎn)某種產(chǎn)品(百臺),總成本為(萬元),其中固定成本為2萬元, 每生產(chǎn)1百臺,成本增加1萬元,銷售收入(萬元),假定該產(chǎn)品產(chǎn)銷平衡。
(1)若要該廠不虧本,產(chǎn)量應控制在什么范圍內(nèi)?
(2)該廠年產(chǎn)多少臺時,可使利潤最大?
(3)求該廠利潤最大時產(chǎn)品的售價。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知冪函數(shù)的圖象經(jīng)過點
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)判斷函數(shù)在區(qū)間上的單調(diào)性,并用單調(diào)性的定義證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知偶函數(shù)y=f(x)定義域是[-3,3],當時,f(x)=-1.

(1)求函數(shù)y=f(x)的解析式;
(2)畫出函數(shù)y=f(x)的圖象,并利用圖象寫出函數(shù)y=f(x)的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=|2x-1|+|2x-3|,x∈R
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)上是減函數(shù),且為奇函數(shù),滿足,試求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義在上的函數(shù),如果對任意,恒有,)成立,則稱階縮放函數(shù).
(1)已知函數(shù)為二階縮放函數(shù),且當時,,求的值;
(2)已知函數(shù)為二階縮放函數(shù),且當時,,求證:函數(shù)上無零點;
(3)已知函數(shù)階縮放函數(shù),且當時,的取值范圍是,求)上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義在R上的單調(diào)遞增函數(shù)滿足,且
(Ⅰ)判斷函數(shù)的奇偶性并證明之;
(Ⅱ)解關(guān)于的不等式:;
(Ⅲ)設集合,.,若集合有且僅有一個元素,求證: 。

查看答案和解析>>

同步練習冊答案