【題目】如圖,四棱柱ABCD-中,地面ABCD為直角梯形,AB∥CD,AB⊥BC,平面ABCD⊥平面AB,∠BA=60°,AB=A=2BC=2CD=2
(1)求證:BC⊥A;
(2)求二面角D-A-B的余弦值;
(3)在線段D上是否存在點M,使得CM∥平面DA?若存在,求的值;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個等級,等級系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中隨機抽取20件,對其等級系數(shù)進(jìn)行統(tǒng)計分析,得到頻率分布表如下:
X | 1 | 2 | 3 | 4 | 5 |
頻率 | a | 0.2 | 0.45 | b | c |
(1)若所抽取的20件日用品中,等級系數(shù)為4的恰有3件,等級系數(shù)為5的恰有2件,求a,b,c的值;
(2)在(1)的條件下,將等級系數(shù)為4的3件日用品記為,等級系數(shù)為5的2件日用品記為,現(xiàn)從,這5件日用品中任取兩件(假定每件日用品被取出的可能性相同),求這兩件日用品的等級系數(shù)恰好相等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為F,經(jīng)過點F的直線與拋物線C交于不同的兩點A,B,的最小值為4.
(1)求拋物線C的方程;
(2)已知P,Q是拋物線C上不同的兩點,若直線恰好垂直平分線段PQ,求實數(shù)k 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線方程為,求的值;
(2)若的導(dǎo)函數(shù)存在兩個不相等的零點,求實數(shù)的取值范圍;
(3)當(dāng)時,是否存在整數(shù),使得關(guān)于的不等式恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校中小學(xué)生人數(shù)和近視情況分別如圖所示.為了解該校中小學(xué)生的近視形成原因,用分層抽樣的方式從中抽取一個容量為50的樣本進(jìn)行調(diào)查.
(1)求樣本中高中生、初中生及小學(xué)生的人數(shù);
(2)從該校初中生和高中生中各隨機抽取1名學(xué)生,用頻率估計概率,求恰有1名學(xué)生近視的概率;
(3)假設(shè)高中生樣本中恰有5名近視學(xué)生,從高中生樣本中隨機抽取2名學(xué)生,用表示2名學(xué)生中近視的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校健康社團(tuán)為調(diào)查本校大學(xué)生每周運動的時長,隨機選取了80名學(xué)生,調(diào)查他們每周運動的總時長(單位:小時),按照共6組進(jìn)行統(tǒng)計,得到男生、女生每周運動的時長的統(tǒng)計如下(表1、2),規(guī)定每周運動15小時以上(含15小時)的稱為“運動合格者”,其中每周運動25小時以上(含25小時)的稱為“運動達(dá)人”.
表1:男生
時長 | ||||||
人數(shù) | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
時長 | ||||||
人數(shù) | 0 | 4 | 12 | 12 | 8 | 4 |
(1)從每周運動時長不小于20小時的男生中隨機選取2人,求選到“運動達(dá)人”的概率;
(2)根據(jù)題目條件,完成下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為本校大學(xué)生是否為“運動合格者”與性別有關(guān).
每周運動的時長小于15小時 | 每周運動的時長不小于15小時 | 總計 | |
男生 | |||
女生 | |||
總計 | |||
參考公式:,其中.
參考數(shù)據(jù):
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù), ).
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若曲線上的動點到直線的最大距離為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的左、右焦點分別是,,點為的上頂點,點在上,,且.
(1)求的方程;
(2)已知過原點的直線與橢圓交于,兩點,垂直于的直線過且與橢圓交于,兩點,若,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com