已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設直線與橢圓相交于不同的兩點,已知點的坐標為,點在線段的垂直平分線上,且,求的值.
科目:高中數學 來源: 題型:解答題
(2013•浙江)已知拋物線C的頂點為O(0,0),焦點F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過F作直線交拋物線于A、B兩點.若直線OA、OB分別交直線l:y=x﹣2于M、N兩點,求|MN|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,如圖,已知橢圓E:的左、右頂點分別為、,上、下頂點分別為、.設直線的傾斜角的正弦值為,圓與以線段為直徑的圓關于直線對稱.
(1)求橢圓E的離心率;
(2)判斷直線與圓的位置關系,并說明理由;
(3)若圓的面積為,求圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率,且直線是拋物線的一條切線.
(1)求橢圓的方程;
(2)點P 為橢圓上一點,直線,判斷l(xiāng)與橢圓的位置關系并給出理由;
(3)過橢圓上一點P作橢圓的切線交直線于點A,試判斷線段AP為直徑的圓是否恒過定點,若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知雙曲線的左、右頂點分別為A1、A2,動直線l:y=kx+m與圓相切,且與雙曲線左、右兩支的交點分別為.
(1)求k的取值范圍,并求的最小值;
(2)記直線的斜率為,直線的斜率為,那么是定值嗎?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的右焦點為,短軸的端點分別為,且.
(1)求橢圓的方程;
(2)過點且斜率為的直線交橢圓于兩點,弦的垂直平分線與軸相交于點.設弦的中點為,試求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的準線與x軸交于點M,過點M作圓的兩條切線,切點為A、B,.
(1)求拋物線E的方程;
(2)過拋物線E上的點N作圓C的兩條切線,切點分別為P、Q,若P,Q,O(O為原點)三點共線,求點N的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的左、右焦點分別為,離心率,連接橢圓的四個頂點所得四邊形的面積為.
(1)求橢圓C的標準方程;
(2)設是直線上的不同兩點,若,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知點和,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(1)當點在圓上運動時,求點的軌跡方程;
(2)已知,是曲線上的兩點,若曲線上存在點,滿足(為坐標原點),求實數的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com