已知F1、F2是雙曲線=1(a>0,b>0)的左、右焦點,過F1且垂直于x軸的直線交雙曲線于A、B兩點,若△ABF2為銳角三角形,則雙曲線離心率e的取值范圍為_________________.

(1,1+

解析:如圖,由雙曲線的對稱性可知∠F2AB=∠F2BA<.因此,欲使△ABF2為銳角三角形只需0<∠AF2F1,令∠AF2F1=α,α∈(0,).在Rt△AF1F2中,|AF2|=,|AF1|=2ctanα,由雙曲線的第一定義知|AF2|-|AF1|=2a,

-2ctanα=2a.∴e=∈(1,1+).


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點,P為雙曲線左支上任一點,若
|PF2|2
|PF1|
的最小值為8a,則雙曲線的離心率e的取值范圍是( 。
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是雙曲
x2
9
-
y2
16
=1
的左、右兩個焦點,點P是雙曲線上一點,且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知F1、F2是雙曲數(shù)學公式的左、右兩個焦點,點P是雙曲線上一點,且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學 來源:2013年陜西省西安市西工大附中高考數(shù)學一模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源:2012年陜西省西安市西工大附中高考數(shù)學四模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步練習冊答案