某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個同心圓弧和延長后通過點(diǎn)的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時,直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?
(1) (2) ,
【解析】
試題分析:(1) 解決應(yīng)用題問題首先要解決閱讀問題,具體說就是要會用數(shù)學(xué)式子正確表示數(shù)量關(guān)系,本題解題思路清晰,就是根據(jù)扇環(huán)面的周長列函數(shù)關(guān)系式, 因?yàn)樯拳h(huán)面的周長為兩段弧長加兩段直線,利用弧長公式,得所以 ,(2) 本題解題思路清晰,就是根據(jù)花壇的面積與裝飾總費(fèi)用的比列函數(shù)關(guān)系式,再由導(dǎo)數(shù)或基本不等式求最值. 裝飾總費(fèi)用為直線部分的裝飾費(fèi)用與弧線部分的裝飾費(fèi)用之和,而花壇的面積為大扇形面積與小扇形面積之差,求最值時要注意定義域范圍的限制.
試題解析:(1)設(shè)扇環(huán)的圓心角為?,則,所以, 4分
(2) 花壇的面積為. 7分
裝飾總費(fèi)用為, 9分
所以花壇的面積與裝飾總費(fèi)用的, 12分
令,則,當(dāng)且僅當(dāng)t=18時取等號,此時.
答:當(dāng)時,花壇的面積與裝飾總費(fèi)用的比最大. 15分
考點(diǎn):函數(shù)關(guān)系式,弧長公式,基本不等式求最值
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇蘇北四市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個同心圓弧和延長后通過點(diǎn)的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時,直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇蘇北四市高三第一次質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個同心圓弧和延長后通過點(diǎn)的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時,直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇鹽城第一中學(xué)高三第二學(xué)期期初檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個同心圓弧和延長后通過點(diǎn)的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時,直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com