已知函數(shù)f(x)=x2-2ax
(1)若函數(shù)在(-∞,2]上是減函數(shù),在(2,+∞)上是增函數(shù),求a的值;
(2)若函數(shù)在(-∞,2]上減函數(shù),求a的取值范圍;
(3)若x∈[0,4],求函數(shù)的最小值.
解:(1)f(x)=x
2-2ax=(x-a)
2-a
2,
則f(x)在(-∞,a]上是減函數(shù),在(a,+∞)上是增函數(shù),
由函數(shù)在(-∞,2]上是減函數(shù),在(2,+∞)上是增函數(shù),得a=2;
(2)若函數(shù)f(x)在(-∞,2]上減函數(shù),則(-∞,2]⊆(-∞,a],
所以a≥2;
(3)①當(dāng)a<0時(shí),f(x)在[0,4]上遞增,f
min(x)=f(0)=0;
②當(dāng)0≤a≤4時(shí),f
min(x)=f(a)=-a
2;
③當(dāng)a>4時(shí),f(x)在[0,4]上遞減,f
min(x)=f(4)=16-8a.
綜上所述,f
min(x)=
.
分析:(1)f(x)=(x-a)
2-a
2,則f(x)在(-∞,a]上是減函數(shù),在(a,+∞)上是增函數(shù),根據(jù)所給單調(diào)性即可求得a值;
(2)由f(x)在(-∞,2]上減函數(shù),知(-∞,2]⊆(-∞,a],從而可得a的范圍;
(3)分a<0,0≤a≤4,a>4進(jìn)行討論,借助單調(diào)性即可求出最小值;
點(diǎn)評(píng):本題考查二次函數(shù)的單調(diào)性及二次函數(shù)在閉區(qū)間上的最值求解,考查分類(lèi)討論思想,屬中檔題.