精英家教網 > 高中數學 > 題目詳情
給出命題p:直線ax+3y+1=0與直線2x+(a+1)y+1=0互相平行的充要條件是a=-3;命題q:若mx2-mx-1<0恒成立,則-4<m<0.關于以上兩個命題,下列結論正確的是(  )
A、命題“p∧q”為真B、命題“p∨q”為假C、命題“p∧¬q”為真D、命題“p∨¬q”為假
分析:根據條件先判斷命題p,q的真假,結合復合命題之間的關系即可得到結論.
解答:解:若直線ax+3y+1=0與直線2x+(a+1)y+1=0平行,則a(a+1)=6,解得a=-3或a=2,當a=2時,兩直線方程分別為2x+3y+1=0和2x+3y+1=0,此時兩直線重合,
∴a=-3,即直線ax+3y+1=0與直線2x+(a+1)y+1=0互相平行的充要條件是a=-3;
∴命題p為真.
當m=0時,不等式mx2-mx-1<0等價為-1<0恒成立,∴命題q為假命題.
∴p∧q為假,p∨q為真,p∧¬q為真,p∨¬q為真,
故選:C.
點評:本題主要考查復合命題之間的關系,利用條件判斷,p,q的真假是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

2、給出下列四個命題:
①若集合A,B滿足A∩B=A,則A⊆B;
②給定命題p,q,若“p∨q”為真,則“p∧q”為真;
③設a,b,m∈R,若a<b,則am2<bm2
④若直線l1:ax+y+1=0與直線l2:x-y+1=0垂直,則a=1.
其中正確命題的個數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列四個命題:
①在△ABC中,∠A>∠B是sinA>sinB的充要條件;
②給定命題p,q,若“p或q”為真,則“p且q”為真;
③設a,b,m∈R,若a<b,則am2<bm2;
④若直線l1:ax+y+1=0與直線l2:x-y+1=0垂直,則a=1.
其中正確命題的序號是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題
①“a=3”是“直線ax-2y-1=0與直線6x-4y+c=0平行”的充要條件;
②P:?x∈R,x2+2x+2≤0.則¬P:?x∈R,x2+2x+2>0;
③函數y=2sin2(x+
π
4
)-cos2x的一條對稱軸方程是x=
8
;
④若a>0,b>0,且2a+b=1,則
2
a
+
1
b
的最小值為9.
其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l1:ax+3y+1=0與l2:2x+(a+1)y+1=0,給出命題P:l1∥l2的充要條件是a=-3或a=2;命題q:l1⊥l2的充要條件是a=-
3
5
.對以上兩個命題,下列結論中正確的是( 。

查看答案和解析>>

同步練習冊答案