設數(shù)列{an},{bn}滿足:a1=4,a2=
5
2
,an+1=
an+bn
2
,bn+1=
2anbn
an+bn
.?
(1)用an表示an+1;并證明:?n∈N+,an>2;?
(2)證明:{ln
an+2
an-2
}
是等比數(shù)列;?
(3)設Sn是數(shù)列{an}的前n項和,當n≥2時,Sn2(n+
4
3
)
是否有確定的大小關(guān)系?若有,加以證明;若沒有,請說明理由.
分析:(1)根據(jù)題意可分別求得a1和a2,進而求得b1,整理把an+1=
an+bn
2
代入bn+1=
2anbn
an+bn
整理得an+1bn+1=anbn═a1b1=4推斷出bn=
4
an
代入an+1=
an+bn
2
中求得an和an+1的遞推式,根據(jù)均值不等式可知
an
2
+
2
an
>2,進而可知an+1>2進而推斷出?n∈N+,an>2
(2)根據(jù)(1)中結(jié)論可求得an+1+2,an+1-2的表達式,進而可求得ln
an+1+2
an+1-2
=2ln
an+2
an-2
,判斷出所以{ln
an+2
an-2
}
是等比數(shù)列.
(3)由(2)可求得數(shù)列{ln
an+2
an-2
}
的通項公式,進而求得an,設Cn=
4
32n-1
,根據(jù)
4
(32n-2)(32n-2)
1
4
Cn-1
進而判斷出
Cn
1
4
Cn-1(
1
4
)
2
Cn-2<…<(
1
4
)
n-1
C1=2(
1
4
)
n-1
可推斷出an<2+2(
1
4
)
n-1
,進而利用等比數(shù)列的求和公式求得Sn=2n+2+
2
3
(1-
1
4n-1
)<2n+
8
3
解答:解:(1)由已知得a1=4,a2=
5
2
,所以b1=1故an+1bn+1=anbn═a1b1=4;
由已知:an>0,a1>2,a2>2,bn=
4
an
an+1=
an
2
+
2
an
,
由均值不等式得an+1>2
故??n∈N+,an>2

(2)
an+1+2
an+1-2
=(
an+2
an-2
)2
,an+1+2=
(an+2)2
2an

an+1-2=
(an-2)2
2an

所以ln
an+1+2
an+1-2
=2ln
an+2
an-2
,所以{ln
an+2
an-2
}
是等比數(shù)列

(3)由(2)可知ln
an+2
an-2
=(ln3)×2n-1=ln32n-1
an=
32n-1+1
32n-1-1

Cn=
4
32n-1
=
4
(32n-2)(32n-2)
1
4
Cn-1
,(n≥2)
?Cn
1
4
Cn-1<(
1
4
)2Cn-2<<(
1
4
)n-1C1=2(
1
4
)n-1

∴當n≥2時,an<2+2(
1
4
)n-1

?Sn=a1+a2++an<4+2(n-1)+2[
1
4
+(
1
4
)
2
++(
1
4
)
n-1
]

=2n+2+2×
1
4
(1-
1
4n-1
)
1-
1
4

=2n+2+
2
3
(1-
1
4n-1
)<2n+
8
3
點評:本題主要考查了數(shù)列的遞推式.考查了學生綜合分析問題和基本的運算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的首項為1,前n項和是Sn,存在常數(shù)A,B使an+Sn=An+B對任意正整數(shù)n都成立.
(1)設A=0,求證:數(shù)列{an}是等比數(shù)列;
(2)設數(shù)列{an}是等差數(shù)列,若p<q,且
1
Sp
+
1
Sq
=
1
S11
,求p,q的值.
(3)設A>0,A≠1,且
an
an+1
≤M
對任意正整數(shù)n都成立,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足a1=0,4an+1=4an+2
4an+1
+1
,令bn=
4an+1

(1)試判斷數(shù)列{bn}是否為等差數(shù)列?并求數(shù)列{bn}的通項公式;
(2)令Tn=
b1×b3×b5×…×b(2n-1)
b2×b4×b6×…b2n
,是否存在實數(shù)a,使得不等式Tn
bn+1
2
log2(a+1)
對一切n∈N*都成立?若存在,求出a的取值范圍;若不存在,請說明理由.
(3)比較bnbn+1bn+1bn的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,已知a1=1,a2=6,a3=11,且(5n-8)Sn+1-(5n+2)Sn=An+B,n=1,2,3…,其中A,B為常數(shù).數(shù)列{an}的通項公式為
an=5n-4
an=5n-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,已知ban-2n=(b-1)Sn
(1)證明:當b=2時,{an-n•2n-1}是等比數(shù)列;
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的通項公式為an=an+b(n∈N*,a>0).數(shù)列{bn}定義如下:對于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值.
(1)若a=2,b=-3,求b10;
(2)若a=2,b=-1,求數(shù)列{bm}的前2m項和公式.

查看答案和解析>>

同步練習冊答案