已知橢圓C:=1(a>b>0)的離心率e=,左、右焦點分別為F1、F2,點P(2,),點F2在線段PF1的中垂線上,
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l:y=kx+m與橢圓C交于M、N兩點,直線F2M與F2N的傾斜角分別為α,β,且α+β=π,試問直線l是否過定點?若過,求該定點的坐標。

解:(1)由橢圓C的離心率e=,
橢圓C的左、右焦點分別為F1(-c,0)、F2(c,0),
又點F2在線段PF1的中垂線上,
∴|F1F2|=|PF2|,
∴(2c)2=(2+(2-c)2,解得c=1,
∴a2=2,b2=1,
∴橢圓的方程為+y2=1;
2)由題意,直線MN的方程為y=kx+m,
消去y得(2k2+1)x2+4kmx+2m2-2=0,
設M(x1,y1),N(x2,y2),
,
,
由已知α+β=π得,
,
化簡,得2kx1x2+(m-k)(x1+x2)-2m=0,
∴2k·,解得m=-2k,
∴直線MN的方程為y=k(x-2),
因此直線MN過定點,該定點的坐標為(2,0)。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013年四川省資陽市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)經(jīng)過(1,1)與(,)兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過原點的直線l與橢圓C交于A、B兩點,橢圓C上一點M滿足|MA|=|MB|.求證:++為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年陜西省高考數(shù)學壓軸卷(解析版) 題型:選擇題

已知橢圓C:+=1(a>b>0)的左右焦點為F1,F(xiàn)2,過F2線與圓x2+y2=b2相切于點A,并與橢圓C交與不同的兩點P,Q,如圖,PF1⊥PQ,若A為線段PQ的靠近P的三等分點,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年吉林省高考數(shù)學仿真模擬試卷9(理科)(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0),直線l為圓O:x2+y2=b2的一條切線,記橢圓C的離心率為e.
(1)若直線l的傾斜角為,且恰好經(jīng)過橢圓的右頂點,求e的大;
(2)在(1)的條件下,設橢圓的上頂點為A,左焦點為F,過點A與AF垂直的直線交x軸的正半軸于B點,過A、B、F三點的圓恰好與直線l:x+y+3=0相切,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高考數(shù)學總復習備考綜合模擬試卷(3)(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0),直線l為圓O:x2+y2=b2的一條切線,記橢圓C的離心率為e.
(1)若直線l的傾斜角為,且恰好經(jīng)過橢圓的右頂點,求e的大小;
(2)在(1)的條件下,設橢圓的上頂點為A,左焦點為F,過點A與AF垂直的直線交x軸的正半軸于B點,過A、B、F三點的圓恰好與直線l:x+y+3=0相切,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年四川省攀枝花市高三12月月考文科數(shù)學試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,且在x軸上的頂點分別為

(1)求橢圓方程;

(2)若直線軸交于點T,P為上異于T的任一點,直線分別與橢圓交于M、N兩點,試問直線MN是否通過橢圓的焦點?并證明你的結論.

 

查看答案和解析>>

同步練習冊答案