“x3=x”是“x=1”的______條件.
由x3=x,得x3-x=0,
即x(x2-1)=0,
所以解得x=0或x=1或x=-1.
所以“x3=x”是“x=1”的必要不充分條件.
故答案為:必要不充分.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,
則x<0時,f′(x)>g′(x);
③函數(shù)f(x)=loga
3+x3-x
(a>0,a≠1)
是偶函數(shù);
④若對?x∈R,函數(shù)f(x)滿足f(x+2)=-f(x),則4是該函數(shù)的一個周期,
其中所有真命題的序號為
 
(注:將真命題的序號全部填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,
則x<0時,f′(x)>g′(x);
③函數(shù)f(x)=loga
3+x
3-x
(a>0,a≠1)
是偶函數(shù);
④若對?x∈R,函數(shù)f(x)滿足f(x+2)=-f(x),則4是該函數(shù)的一個周期,其中真命題的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)若f(x)=cosx,x∈[0,π],試寫出f1(x),f2(x)的表達式;
(2)已知函數(shù)f(x)=x2,x∈[-1,4],試判斷f(x)是否為[-1,4]上的“k階收縮函數(shù)”,如果是,求出對應(yīng)的k;如果不是,請說明理由;
(3)已知b>0,函數(shù)f(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“x3=x”是“x=1”的
必要不充分
必要不充分
條件.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市海淀區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)若f(x)=cosx,x∈[0,π],試寫出f1(x),f2(x)的表達式;
(2)已知函數(shù)f(x)=x2,x∈[-1,4],試判斷f(x)是否為[-1,4]上的“k階收縮函數(shù)”,如果是,求出對應(yīng)的k;如果不是,請說明理由;
(3)已知b>0,函數(shù)f(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

同步練習冊答案