【題目】有兩種理財(cái)產(chǎn)品和,投資這兩種理財(cái)產(chǎn)品一年后盈虧的情況如下(每種理財(cái)產(chǎn)品的不同投資結(jié)果之間相互獨(dú)立):
產(chǎn)品:
投資結(jié)果 | 獲利 | 不賠不賺 | 虧損 |
概率 |
產(chǎn)品:
投資結(jié)果 | 獲利 | 不賠不賺 | 虧損 |
概率 |
注:,
(1)若甲、乙兩人分別選擇了產(chǎn)品投資,一年后他們中至少有一人獲利的概率大于,求實(shí)數(shù)的取值范圍;
(2)若丙要將20萬元人民幣投資其中一種產(chǎn)品,以一年后的投資收益的期望值為決策依據(jù),則丙選擇哪種產(chǎn)品投資較為理想.
【答案】(1) (2)見解析
【解析】
(1)記事件為“甲選擇產(chǎn)品投資且獲利”,記事件為“乙選擇產(chǎn)品投資且獲利”,記事件為“一年后甲、乙兩人至少有一人投資獲利”,根據(jù)題意得到,,由,以及,即可求出結(jié)果;
(2)假設(shè)丙選擇產(chǎn)品投資,且記為獲利金額,根據(jù)題中條件,得到期望;假設(shè)丙選擇產(chǎn)品投資,且記為獲利金額,由題中條件,得到期望,分情況討論,比較大小,即可得出結(jié)果.
(1)記事件為“甲選擇產(chǎn)品投資且獲利”,記事件為“乙選擇產(chǎn)品投資且獲利”,記事件為“一年后甲、乙兩人至少有一人投資獲利”
則,,,
∴
又,且,
∴;
(2)假設(shè)丙選擇產(chǎn)品投資,且記為獲利金額(單位:萬元),則的分布列為:
投資結(jié)果 | 10 | 0 | |
概率 |
∴
假設(shè)丙選擇產(chǎn)品投資,且記為獲利金額(單位:萬元),則的分布列為:
投資結(jié)果 | 8 | 0 | |
概率 |
∴當(dāng)時(shí),,丙可在產(chǎn)品和產(chǎn)品中任選一個(gè)投資;
當(dāng)時(shí),,丙應(yīng)選產(chǎn)品投資;
當(dāng)時(shí),,丙應(yīng)選產(chǎn)品投資.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列結(jié)論:
(1)若對(duì)任意,且,都有,則為R上的減函數(shù);
(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);
(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);
(4)t為常數(shù),若對(duì)任意的,都有則關(guān)于對(duì)稱。
其中所有正確的結(jié)論序號(hào)為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù),為自然對(duì)數(shù)的底數(shù).
(1)求的值;
(2)求證:;
(3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左右焦點(diǎn)分別為,以為圓心,為半徑的圓交的右支于兩點(diǎn),若的一個(gè)內(nèi)角為,則的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)F與拋物線焦點(diǎn)重合,且橢圓的離心率為,過軸正半軸一點(diǎn) 且斜率為的直線交橢圓于兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在實(shí)數(shù)使以線段為直徑的圓經(jīng)過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)湖的邊界是圓心為的圓,湖的一側(cè)有一條直線型公路,湖上有橋(是圓的直徑).規(guī)劃在公路上選兩個(gè)點(diǎn),,并修建兩段直線型道路,,規(guī)劃要求:線段,上的所有點(diǎn)到點(diǎn)的距離均不小于圓的半徑.已知點(diǎn),到直線的距離分別為和(,為垂足),測(cè)得,,(單位:百米).
(1)若道路與橋垂直,求道路的長(zhǎng);
(2)在規(guī)劃要求下,和中能否有一個(gè)點(diǎn)選在處?并說明理由;
(3)在規(guī)劃要求下,若道路和的長(zhǎng)度均為(單位:百米),求當(dāng)最小時(shí),、兩點(diǎn)間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),().
(Ⅰ)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),若,若函數(shù)對(duì)恒成立,求實(shí)數(shù)的取值范圍.(是自然對(duì)數(shù)的底數(shù),)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com