精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在半徑為40cm的半圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中A,B在直徑上,點C,D在圓周上、
(1)設AD=x,將矩形ABCD的面積y表示成x的函數,并寫出其定義域;
(2)怎樣截取,才能使矩形材料ABCD的面積最大?并求出最大面積.

【答案】
(1)解:AB=2OA=2 =2 ,

∴y=f(x)=2x ,x∈(0,40).


(2)解:y2=4x2(1600﹣x2)≤4× =16002,即y≤1600,當且僅當x=20 時取等號.

∴截取AD=20 時,才能使矩形材料ABCD的面積最大,最大面積為1600.


【解析】(1)OA=2 =2 ,可得y=f(x)=2x ,x∈(0,40).(2)平方利用基本不等式的性質即可得出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)證明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給定橢圓C: + =1(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為 ,且經過點(0,1).
(1)求實數a,b的值;
(2)若過點P(0,m)(m>0)的直線l與橢圓C有且只有一個公共點,且l被橢圓C的伴隨圓C1所截得的弦長為2 ,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中正確的有
①常數數列既是等差數列也是等比數列;
②在△ABC中,若sin2A+sin2B=sin2C,則△ABC為直角三角形;
③若A,B為銳角三角形的兩個內角,則tanAtanB>1;
④若Sn為數列{an}的前n項和,則此數列的通項an=Sn﹣Sn1(n>1).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】大學生村官王善良落實政府“精準扶貧”精神,幫助貧困戶張三用9萬元購進一部節(jié)能環(huán)保汽車,用于出租.假設第一年需運營費用2萬元,從第二年起,每年運營費用均比上一年增加2萬元,該車每年的運營收入均為11萬元.若該車使用了n(n∈N*)年后,年平均盈利額達到最大值,則n等于(注:年平盈利額=(總收入﹣總成本)× )(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數φ(x)=a2x﹣ax(a>0,a≠1).
(1)求函數φ(x)在[﹣2,2]上的最大值;
(2)當a= 時,φ(x)≤t2﹣2mt+2對所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知P為△ABC所在平面外一點,PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面 ABC,H,則H為△ABC的(
A.重心
B.垂心
C.外心
D.內心

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點,過E點做EF⊥PB交PB于點F.求證:
(1)PA∥平面DEB;
(2)PB⊥平面DEF.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側棱與底面垂直,體積為 ,底面是邊長為 的正三角形,若P為底面A1B1C1的中心,則PA與平面A1B1C1所成角的大小為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案