(2013•珠海二模)通過隨機(jī)詢問某校100名高中學(xué)生在購買食物時(shí)是否看營養(yǎng)說明,得到如下的列聯(lián)表:
(1)從這50名女生中按是否看營養(yǎng)說明采取分層抽樣,抽取一個(gè)容量為5的樣本,問樣本中看與不看營養(yǎng)說明的女生各有多少名?
(2)從(1)中的5名女生樣本中隨機(jī)選取兩名作深度訪談,求選到看與不看營養(yǎng)說明的女生各一名的概率;
(3)根據(jù)以下列聯(lián)表,問有多大把握認(rèn)為“性別與在購買食物時(shí)看營養(yǎng)說明”有關(guān)?
性別與看營養(yǎng)說明列聯(lián)表  單位:名
總計(jì)
看營養(yǎng)說明 40 30 70
不看營養(yǎng)說明 10 20 30
總計(jì) 50 50 100
統(tǒng)計(jì)量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
概率表
P(K2≥k0 0.15 0.10 0.05 0.025 0.010
K0 2.072 2.706 3.841 5.024 6.635
分析:(1)先求出每個(gè)個(gè)體被抽到的概率,再用每層的個(gè)體數(shù)乘以每個(gè)個(gè)體被抽到的概率等于該層應(yīng)抽取的個(gè)體數(shù).
(2)從這5名女生中隨機(jī)選取兩名,共有10個(gè)等可能的基本事件,其中,事件A“選到看與不看營養(yǎng)說明的女生各一名”包含了6個(gè)的基本事件,由此求得所求的概率.
(3)根據(jù)性別與看營養(yǎng)說明列聯(lián)表,求出K2的觀測值k的值為4.762>3.841,再根據(jù)P(K2≥3.841)=0.05,得出有多大把握認(rèn)為學(xué)生“性別與在購買食物時(shí)看營養(yǎng)說明”有關(guān).
解答:解:(1)根據(jù)分層抽樣可得:樣本中看營養(yǎng)說明的女生有
5
50
×30=3名,
樣本中不看營養(yǎng)說明的女生有
5
50
×20=2 名.…(2分)
(2)記樣本中看營養(yǎng)說明的3名女生為a1、a2、a3,不看營養(yǎng)說明的2名女生為b1、b2,
從這5名女生中隨機(jī)選取兩名,共有10個(gè)等可能的基本事件為:(a1、a2);( a1、a3); (a1、b1);
( a1、b2);(a2、a3);(a2、b1);(a2、b2);(a3、b1);(a3、b2);(b1、b2).…(5分)
其中,事件A“選到看與不看營養(yǎng)說明的女生各一名”包含了6個(gè)的基本事件:(a1、b1);( a1、b2);
(a2、b1);(a2、b2);(a3、b1);(a3、b2).…(7分)
所以所求的概率為P(A)=
6
10
=
3
5
.…(9分)
(3)性別與看營養(yǎng)說明列聯(lián)表 單位:名
總計(jì)
看營養(yǎng)說明 40 30 70
不看營養(yǎng)說明 10 20 30
總計(jì) 50 50 100
假設(shè)H0:該校高中學(xué)生性別與在購買食物時(shí)看營養(yǎng)說明無關(guān),則K2應(yīng)該很。
根據(jù)題中的列聯(lián)表得K2=
100×(40×20-30×10)2
70×30×50×50
≈4.762>3.841,…(11分)
由P(K2≥3.841)=0.05,
有95%的把握認(rèn)為“性別與在購買食物時(shí)看營養(yǎng)說明”有關(guān).
點(diǎn)評:本題主要考察讀圖表、抽樣方法、隨機(jī)事件的概率、獨(dú)立性檢驗(yàn)等基礎(chǔ)知識,考查運(yùn)用概率統(tǒng)計(jì)知識解決簡單實(shí)際問題的能力,數(shù)據(jù)處理能力和應(yīng)用意識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)某高校“統(tǒng)計(jì)初步”課程的教師隨機(jī)調(diào)查了選該課的一些學(xué)生情況,具體數(shù)據(jù)如下表.為了檢驗(yàn)主修統(tǒng)計(jì)專業(yè)是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到Χ2=
50(13×20-10×7)2
23×27×20×30
≈4.84
因?yàn)棣?SUP>2>3.841,所以斷定主修統(tǒng)計(jì)專業(yè)與性別有關(guān)系,這種判斷出錯(cuò)的可能性最高為
5%
5%

       專業(yè)
性別
非統(tǒng)計(jì)專業(yè) 統(tǒng)計(jì)專業(yè)
13 10
7 20
P(K2≥k) 0.050 0.025 0.010 0.001
k 3.841 5.024 6.635 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)設(shè)i為虛數(shù)單位,則復(fù)數(shù)
4+3i
i
的虛部為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)已知函數(shù)f(x)=
x2-ax+1
4x-4×2x-a
,
x≥a
x<a
,
(1)若x<a時(shí),f(x)<1恒成立,求實(shí)數(shù)a的取值范圍;
(2)若a≥-4時(shí),函數(shù)f(x)在實(shí)數(shù)集R上有最小值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)已知集合A={x|-1≤-x<2},B={x|-x≥0},則A∩B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)已知非零向量
a
b
滿足
a
b
,則函數(shù)f(x)=(
a
x+
b
)2(x∈R)
是( 。

查看答案和解析>>

同步練習(xí)冊答案