已知正實(shí)數(shù)x滿(mǎn)足方程2t3-t2x+2t(x+1)-x-x2=0,
a
=(1,x),
b
=(-3,2),
c
=
a
+t
b
,則
a
c
取最小值m時(shí),m和x的值分別為( 。
A、m=
23
32
,x=
3
16
B、m=
23
32
,x=
3
8
C、m=-
7
2
,x=
3
4
D、m=-
7
2
,x=
3
2
考點(diǎn):平面向量的綜合題
專(zhuān)題:平面向量及應(yīng)用
分析:先化簡(jiǎn)方程2t3-t2x+2t(x+1)-x-x2=0,可得x=2t,再利用向量的數(shù)量積公式,結(jié)合配方法,可得結(jié)論.
解答: 解:∵2t3-t2x+2t(x+1)-x-x2=0,
∴2t(t2+x+1)-x(t2+x+1)=0
∴(x-2t)(t2+x+1)=0
∵x>0,∴x=2t
a
=(1,x),
b
=(-3,2),
c
=
a
+t
b
=(1-3t,x+2t)
a
c
=m=1-3t+x2+2tx=8t2-3t+1
當(dāng)t=
3
16
時(shí),m取得最小值
23
32
,此時(shí)x=
3
8

故選B.
點(diǎn)評(píng):本題考查向量知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,正確運(yùn)用向量的數(shù)量積公式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+(b-8)x-a-ab,當(dāng)x∈(-3,2)時(shí),f(x)>0,當(dāng)x∈(-∞,-3)∪(2,+∞)時(shí),f(x)<0
(1)求a、b的值;
(2)若(c-1)x2+bx+a≤0的解集為R,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是遞增的等差數(shù)列,它的前三項(xiàng)的和為-3,前三項(xiàng)的積為8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=logax在[2,4]上最大值比最小值大1,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x,恒有f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2
(1)求證:f(x)是周期函數(shù);
(2)當(dāng)x∈[2,4]時(shí),求f(x)的解析式; 
(3)計(jì)算f(0)+f(1)+f(2)+…+f(2011)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)邊分別為a,b,c,若A,B,C的度數(shù)成等差數(shù)列且b=
3
,則a+c的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋子共裝有9個(gè)球,其中4個(gè)白球,4個(gè)黃球,1個(gè)黑球,每次從袋中取出一個(gè)球(不放回,且每球取到的機(jī)會(huì)均等),直到當(dāng)袋中的白球數(shù)小于2個(gè)或黃球數(shù)小于2個(gè)時(shí)才停止取球,記隨機(jī)變量ξ表示取球的次數(shù).
(Ⅰ)求當(dāng)ξ=3時(shí)的概率;
(Ⅱ)求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,a=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1,a2+b2,a3+b3成等比數(shù)列.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x)…fn+1(x)=fn′(x)(n∈N),則f2013(x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案