已知函數(shù)f(x)=x3-
32
ax2+b
(a,b為實數(shù),且a>1)在區(qū)間[-1,1]上的最大值為1,最小值為-2.
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=f(x)-mx在區(qū)間[-2,2]上為減函數(shù),求實數(shù)m的取值范圍.
分析:(1)先對函數(shù)f(x)進(jìn)行求導(dǎo)判斷其單調(diào)性后可知f(-1)=-
3
2
a,f(1)=2-
3
2
a,再根據(jù)函數(shù)在區(qū)間[-1,1]上的最大值為1,最小值為-2可得答案.
(2)先寫出函數(shù)g(x)的解析式,然后求導(dǎo)數(shù),令導(dǎo)函數(shù)在區(qū)間[-2,2]小于等于0恒成立即可得到答案.
解答:解:(1)f′(x)=3x2-3ax,
令f′(x)=0,得x1=0,x2=a,
∵a>1,
∴f(x)在[-1,0]上為增函數(shù),在[0,1]上為減函數(shù).
∴f(0)=b=1,
∵f(-1)=-
3
2
a,f(1)=2-
3
2
a,
∴f(-1)<f(1),
∴f(-1)=-
3
2
a=-2,a=
4
3

∴f(x)=x3-2x2+1.
(2)g(x)=x3-2x2-mx+1,g′(x)=3x2-4x-m.
由g(x)在[-2,2]上為減函數(shù),知g′(x)≤0在x∈[-2,2]上恒成立.
g′(-2)≤0
g′(2)≤0
,即
20-m≤0
4-m≤0

∴m≥20.
∴實數(shù)m的取值范圍是m≥20.
點評:本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)正負(fù)之間的關(guān)系,即當(dāng)導(dǎo)數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案