【題目】某網(wǎng)絡(luò)營(yíng)銷(xiāo)部門(mén)為了統(tǒng)計(jì)某市網(wǎng)友2015年11月11日在某網(wǎng)店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市100名網(wǎng)友的網(wǎng)購(gòu)金額情況,得到如下頻率分布直方圖.
(1)估計(jì)直方圖中網(wǎng)購(gòu)金額的中位數(shù);
(2)若規(guī)定網(wǎng)購(gòu)金額超過(guò)15千元的顧客定義為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額不超過(guò)15千元的顧客定義為“非網(wǎng)購(gòu)達(dá)人”;若以該網(wǎng)店的頻率估計(jì)全市“非網(wǎng)購(gòu)達(dá)人”和“網(wǎng)購(gòu)達(dá)人”的概率,從全市任意選取3人,則3人中“非網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)達(dá)人”的人數(shù)之差的絕對(duì)值為,求的分布列與數(shù)學(xué)期望.
【答案】(1);(2).
【解析】試題分析:(1)設(shè)中位數(shù)是x,由頻率分布直方圖的性質(zhì)能估計(jì)直方圖中網(wǎng)購(gòu)金額的中位數(shù).(2)依題意,從全市任取的三人中“網(wǎng)購(gòu)達(dá)人”的人數(shù)服從B(3,0.3),所以X可能取值為1,3,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望
試題解析:(1)設(shè)中位數(shù)是,則
(2)依題意,從全市任取的三人中“網(wǎng)購(gòu)達(dá)人”的人數(shù)服從,所以可能取值為,且,
所以的分布列為
X | 1 | 3 |
p | 0.63 | 0.37 |
數(shù)學(xué)期望
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,若acos2 +ccos2 = b,那么a,b,c的關(guān)系是( )
A.a+b=c
B.a+c=2b
C.b+c=2a
D.a=b=c
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1 .
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天氣預(yù)報(bào)說(shuō),在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機(jī)模擬試驗(yàn)的方法估計(jì)這三天中恰有兩天下雨的概率:先利用計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個(gè)隨機(jī)數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機(jī)模擬試驗(yàn)產(chǎn)生了如下20組隨機(jī)數(shù): 907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),這三天中恰有兩天下雨的概率近似為( )
A.0.35
B.0.25
C.0.20
D.0.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】六個(gè)面都是平行四邊形的四棱柱稱(chēng)為平行六面體.已知在平行四邊形ABCD中(如圖1),有AC2+BD2=2(AB2+AD2),則在平行六面體ABCD﹣A1B1C1D1中(如圖2),AC12+BD12+CA12+DB12等于( )
A.2(AB2+AD2+AA12)
B.3(AB2+AD2+AA12)
C.4(AB2+AD2+AA12)
D.4(AB2+AD2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點(diǎn).
(1)求證:平面CFM⊥平面BDF;
(2)若點(diǎn)N為線(xiàn)段CE的中點(diǎn),EC=2,F(xiàn)D=3,求證:MN∥平面BEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C:y2=2px過(guò)點(diǎn)P(1,1).過(guò)點(diǎn)(0,)作直線(xiàn)l與拋物線(xiàn)C交于不同的兩點(diǎn)M,N,過(guò)點(diǎn)M作x軸的垂線(xiàn)分別與直線(xiàn)OP、ON交于點(diǎn)A,B,其中O為原點(diǎn).
(Ⅰ)求拋物線(xiàn)C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線(xiàn)方程;
(Ⅱ)求證:A為線(xiàn)段BM的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=log3x,
(1)求f(x)的解析式;
(2)解不等式f(x)≤2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com