【題目】設(shè)a,b均大于0,且 + =1.求證:對(duì)于每個(gè)n∈N* , 都有(a+b)n﹣(an+bn)≥22n﹣2n+1

【答案】證明:由a,b均大于0,且 + =1,
可得 ,
由二項(xiàng)式定理,得
=
則原不等式成立.
【解析】運(yùn)用二元均值不等式可得 ≥2,再由二項(xiàng)式定理,化簡(jiǎn)整理可得(a+b)n﹣(an+bn
= ,再由均值不等式即可得證.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解不等式的證明的相關(guān)知識(shí),掌握不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等,以及對(duì)平均值不等式的理解,了解平均不等式:,(當(dāng)且僅當(dāng)時(shí)取號(hào)即調(diào)和平均幾何平均算術(shù)平均平方平均)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1與A1C相交于點(diǎn)D.

(1)求證:BD⊥A1C;
(2)若E在棱BC1上,且滿足DE∥面ABC,求三棱錐E﹣ACC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次體育興趣小組的聚會(huì)中,要安排人的座位,使他們?cè)谌鐖D所示的個(gè)椅子中就坐,且相鄰座位(如, )上的人要有共同的體育興趣愛(ài)好.現(xiàn)已知這人的體育興趣愛(ài)好如下表所示,且小林坐在號(hào)位置上,則號(hào)位置上坐的是( )

小林

小方

小馬

小張

小李

小周

體育興趣愛(ài)好

籃球,網(wǎng)球,羽毛球

足球,排球,跆拳道

籃球,棒球,乒乓球

擊劍,網(wǎng)球,足球

棒球,排球,羽毛球

跆拳道,擊劍,自行車(chē)

A. 小方 B. 小張 C. 小周 D. 小馬

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知
(1)證明f(x)是R上的增函數(shù);
(2)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,請(qǐng)求出a的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B,C,D為空間四點(diǎn).在△ABC中,AB=2,AC=BC= .等邊三角形ADB以AB為軸運(yùn)動(dòng).

(1)當(dāng)平面ADB⊥平面ABC時(shí),求CD;
(2)當(dāng)△ADB轉(zhuǎn)動(dòng)時(shí),是否總有AB⊥CD?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的中心為E(﹣1,0),一邊AB所在的直線方程為x+3y﹣5=0,求其它三邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二面角α﹣MN﹣β的大小為60°,菱形ABCD在面β內(nèi),A、B兩點(diǎn)在棱MN上,∠BAD=60°,E是AB的中點(diǎn),DO⊥面α,垂足為O.

(1)證明:AB⊥平面ODE;
(2)求異面直線BC與OD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)z滿足|z|= ,z2的虛部為2.
(1)求z;
(2)設(shè)z,z2 , z﹣z2在復(fù)平面對(duì)應(yīng)的點(diǎn)分別為A,B,C,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】海中一小島的周?chē)?/span> 內(nèi)有暗礁,海輪由西向東航行至處測(cè)得小島位于北偏東,航行8后,于處測(cè)得小島在北偏東(如圖所示).

1)如果這艘海輪不改變航向,有沒(méi)有觸礁的危險(xiǎn)?請(qǐng)說(shuō)明理由.

2)如果有觸礁的危險(xiǎn),這艘海輪在處改變航向?yàn)闁|偏南方向航行,求的最小值.

附:

查看答案和解析>>

同步練習(xí)冊(cè)答案