(08年銀川一中一模理)  (12分)已知函數(shù)

   (1)若函數(shù)f(x)在上的增函數(shù),求正實(shí)數(shù)a的取值范圍;

   (2)a=1時(shí),求f(x)在[,2]上最大值和最小值;

   (3)a=1時(shí),求證:對(duì)大于1的正整數(shù)n,.

解析:(1)由已知:   

依題意得:≥0對(duì)x∈成立

∴ax-1≥0,對(duì)x∈恒成立,即a≥,對(duì)x∈恒成立,

∴a≥(max,即a≥1.

(2)當(dāng)a=1時(shí),,x∈[,2],若x∈,則,

若x∈,則,故x=1是函數(shù)f(x)在區(qū)間[,2]上唯一的極小值點(diǎn),也就是最小值點(diǎn),故f(x)min=f(1)=0.

又f()=1-ln2,f(2)=- +ln2,f()-f(2)=-2ln2=,

∵e3>2.73=19.683>16,

∴f()-f(2)>0   

∴f()>f(2)  

∴f(x)在[,2]上最大值是f(

∴f(x)在[,2]最大1-ln2,最小0

(3)當(dāng)a=1時(shí),由(1)知,f(x)=+lnx在

當(dāng)n>1時(shí),令x=,則x>1     ∴f(x)>f(1)=0

即ln>

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年銀川一中一模理)  (12分)如圖已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸是短軸的2倍且經(jīng)過(guò)點(diǎn)M(2,1),平行于OM的直線(xiàn)在y軸上的截距為m(m≠0),且交橢圓于A(yíng)、B兩點(diǎn).

   (1)求橢圓的方程;

   (2)求m的取值范圍;

   (3)求證:直線(xiàn)MA、MB與x軸圍成一個(gè)等腰三角形。說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年銀川一中一模理)  (10分) 坐標(biāo)系與參數(shù)方程已知圓系的方程為

x2+y2-2axCos-2aySin=0(a>0)

   (1)求圓系圓心的軌跡方程;

   (2)證明圓心軌跡與動(dòng)圓相交所得的公共弦長(zhǎng)為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年銀川一中一模理)  設(shè)a≥0,b≥0,a≠b。求證:對(duì)于任意正數(shù)都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年銀川一中一模文) (12分)如圖,在底面是正方形的四棱錐P―ABCD中,PA=AC=2,PB=PD=

   (1)證明PA⊥平面ABCD;

   (2)已知點(diǎn)E在PD上,且PE:ED=2:1,點(diǎn)F為棱PC的中點(diǎn),證明BF//平面AEC。

   (3)求四面體FACD的體積;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年銀川一中一模文)  (12分)已知橢圓過(guò)點(diǎn),且離心率

   (1)求橢圓方程;

   (2)若直線(xiàn)與橢圓交于不同的兩點(diǎn),且線(xiàn)段的垂直平分線(xiàn)過(guò)定點(diǎn),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案