已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對應(yīng)值如表:
x
-1
0
4
5
f(x)
1
2
2
1
 
f(x)的導(dǎo)函數(shù)y=f'(x)的圖象如圖所示:

下列關(guān)于f(x)的命題:
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時,函數(shù)y=f(x)-a有4個零點(diǎn);
⑤函數(shù)y=f(x)-a的零點(diǎn)個數(shù)可能為0, 1,2,3,4個.
其中正確命題的序號是     
②⑤

試題分析:根據(jù)的圖像,可得f(x)在(-1,0),(2,4)上單調(diào)遞增,在(0,2),(4,5)上單調(diào)遞減,因此可以畫出如下三種f(x)示意圖的情況,結(jié)合示意圖分析,①:顯然錯誤,無法判定f(x)是否為周期函數(shù);②:正確;.③:f(x)在[-1,5]上的最大值為2,∴t的最大值為5;④:由示意圖易知交點(diǎn)個數(shù)為4或2,④錯誤;⑤:根據(jù)所畫的示意圖可知,⑤正確.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為自然對數(shù)的底數(shù)).
(1)求曲線處的切線方程;
(2)若的一個極值點(diǎn),且點(diǎn),滿足條件:.
(。┣的值;
(ⅱ)求證:點(diǎn),,是三個不同的點(diǎn),且構(gòu)成直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f1(x)=sin x+cos x,記f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*,n≥2),則f1+f2+…+f2 014=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,現(xiàn)給出如下結(jié)論:
;②;③;④;;
的極值為1和3.其中正確命題的序號為                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;
(3)若,使成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),,直線與 函數(shù)的圖像都相切,且與函數(shù)圖像的切點(diǎn)的橫坐標(biāo)為1,則的值為 (     )
A.1 B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a≤+ln x對任意x∈[,2]恒成立,則a的最大值為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是函數(shù)的導(dǎo)數(shù),則=     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,若,則的值等于 (    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案