設(shè)f(x)=sin
x
2
-2cos
x
2
的一條對稱軸為x=θ,則sinθ=
 
考點:兩角和與差的正弦函數(shù),正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用輔助角公式可得f(x)=
5
sin(
x
2
-φ),其中cosφ=
1
5
,sinφ=
2
5
,再由f(x)=sin
x
2
-2cos
x
2
的一條對稱軸為x=θ,可得sinθ=sin(2kπ+π+2φ),利用誘導(dǎo)公式與二倍角的正弦即可求得答案.
解答: 解:f(x)=sin
x
2
-2cos
x
2

=
5
1
5
sin
x
2
-
2
5
cos
x
2

=
5
sin(
x
2
-φ).其中cosφ=
1
5
,sinφ=
2
5
,對稱軸為:
x
2
-φ=kπ+
π
2
,k∈Z,
即x=2kπ+π+2φ,k∈Z,
又對稱軸為x=θ,
得sinθ=sin(2kπ+π+2φ)=-sin2φ=-2sinφcosφ=-2×
2
5
×
1
5
=-
4
5

故答案為:-
4
5
點評:本題考查兩角差的正弦,突出考查輔助角公式的應(yīng)用及正弦函數(shù)的對稱性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∈CRQ
.則 
(ⅰ)f(f(x))=
 
;
(ⅱ)給出下列四個命題:
①函數(shù)f(x)是偶函數(shù);
②存在xi∈R(i=1,2,3),使得以點(xi,f(xi))(i=1,2,3)為頂點的三角形是等邊三角形;
③存在xi∈R(i=1,2,3),使得以點(xi,f(xi))(i=1,2,3)為頂點的三角形是等腰直角三角形;
④存在xi∈R(i=1,2,3,4),使得以點(xi,f(xi))(i=1,2,3,4)為頂點的四邊形是菱形.
其中,所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-x-12<0},集合B={x|x2+2x-8>0},集合C={x|x2-4ax+3a2<0}.
(1)求A∩(CRB);
(2)若C?(A∩B),試確定實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題是( 。
A、?x0∈R,e x0≤0
B、?x∈R,2x>x2
C、“a>1,b>1”是“ab>1”的充要條件
D、設(shè)
a
,
b
為向量,則“|
a
b
|=|
a
||
b
|”是“
a
b
”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax.
(1)當(dāng)a=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(2)若f(x)在區(qū)間[1,e]上的最大值為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知BC=8,AC=5,三角形面積為12,則cosC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2+bx+c在(-∞,-
3
2
)上減函數(shù),在(-
3
2
,+∞)上是增函數(shù),且對應(yīng)方程兩個實根x1,x2滿足|x1-x2|=2.
(1)求二次函數(shù)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-2,1]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=x+b與圓(x-1)2+y2=1有兩個不同的公共點,則實數(shù)b的取值范圍為( 。
A、(-
2
-1,
2
-1)
B、(-∞,
2
-1)
C、(-∞,-
2
-1)∪(
2
-1,+∞)
D、[-
2
-1,
2
-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知雙曲線
x2
a2
-
y2
b2
=1(a、b>0)的左右焦點分別為F1、F2,|F1F2|=6,P是雙曲線右支上的一點,PF1⊥PF2,F(xiàn)2P與y軸交于點A,△APF1的內(nèi)切圓半徑為
3
,則雙曲線的離心率為(  )
A、2
2
B、
2
C、2
3
D、
3

查看答案和解析>>

同步練習(xí)冊答案