20.甲、乙兩人從5門不同的選修課中各選修2門,則甲、乙所選的課程中恰有1門相同的選法有60種.

分析 間接法:①先求所有兩人各選修2門的種數(shù),②再求兩人所選兩門都相同與都不同的種數(shù),作差可得答案.

解答 解:根據(jù)題意,采用間接法:
①由題意可得,所有兩人各選修2門的種數(shù)C52C52=100,
②兩人所選兩門都相同的有為C52=10種,都不同的種數(shù)為C52C32=30,
故只恰好有1門相同的選法有100-10-30=60種.
故答案為60.

點評 本題考查組合公式的運用,解題時注意事件之間的關(guān)系,選用間接法是解決本題的關(guān)鍵,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知某幾何體的三視圖如圖表 所示,則該幾何體的體積為( 。
A.$\frac{16}{3}$B.$\frac{64}{3}$C.$\frac{80}{3}$D.$\frac{43}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.橢圓$\frac{x^2}{16}+\frac{y^2}{3}=1$的左右焦點分別為F1,F(xiàn)2,一條直線經(jīng)過F1與橢圓交于A,B兩點,則△ABF2 的周長為( 。
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知A,B,C是△ABC的三個內(nèi)角.
(1)3cos(B-C)-1=6cosBcosC,求cosA的值;
(2)若sin(A+$\frac{π}{6}$)=2cosA,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)集合A={x||x-2|<1,x∈R},集合B=Z,則A∩B={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“x<2”是“x2<4”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|2<x<4},B={x||x|≥1},則A∩B=( 。
A.(1,+∞)B.(2,4)C.(-∞,-1)∪(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.log26-log23-3${\;}^{{{log}_3}\frac{1}{2}}}$+(${\frac{1}{4}}$)${\;}^{-\frac{1}{2}}}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.偶函數(shù)f(x)(x∈R)滿足:f(-4)=f(2)=0,且在區(qū)間[0,3]與[3,+∞)上分別遞減和遞增,則不等式x•f(x)<0的解集為( 。
A.(-∞,-4)∪(4,+∞)B.(-∞,-4)∪(-2,0)∪(2,4)C.(-∞,-4)∪(-2,0)D.(-4,-2)∪(2,4)

查看答案和解析>>

同步練習(xí)冊答案