7.過點(diǎn)P(3,2)作曲線C:x2+y2-2x=0的兩條切線,切點(diǎn)分別為A,B,則直線AB的方程為( 。
A.2x+2y-3=0B.2x-2y-3=0C.4x-y-3=0D.4x+y-3=0

分析 求出以(3,2)、C(1,0)為直徑的圓的方程,將兩圓的方程相減可得公共弦AB的方程.

解答 解:圓x2+y2-2x=0,可化為(x-1)2+y2=1的圓心為C(1,0),半徑為1,
以(3,2)、C(1,0)為直徑的圓的方程為(x-2)2+(y-1)2=2,
將兩圓的方程相減可得公共弦AB的方程2x+2y-3=0,
故選:A.

點(diǎn)評(píng) 本題考查直線和圓的位置關(guān)系以及圓和圓的位置關(guān)系、圓的切線性質(zhì),體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}滿足an+2-an+1=an+1-an,n∈N*,且${a_4}=\frac{π}{2}$,若函數(shù)$f(x)=sin2x+2{cos^2}\frac{x}{2}$,記yn=f(an),則{yn}的前7項(xiàng)和為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長為4,且點(diǎn)(1,$\frac{\sqrt{3}}{2}$)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C長軸上的一個(gè)動(dòng)點(diǎn),過P作斜率為$\frac{1}{2}$的直線l交橢圓C于A、B兩點(diǎn),求證:|PA|2+|PB|2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知△ABC的外心O滿足$\overrightarrow{AO}$=$\frac{1}{3}$($\overrightarrow{AB}+\overrightarrow{AC}$),則cosA=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知與直線$x=-\frac{1}{4}$相切的動(dòng)圓M與圓$C:{({x-\frac{1}{2}})^2}+{y^2}=\frac{1}{16}$外切.
(1)求圓心M的軌跡L的方程;
(2)若傾斜角為$\frac{π}{4}$且經(jīng)過點(diǎn)(2.0)的直線l與曲線L相交于兩點(diǎn)A、B,求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在鈍角△ABC中,c=$\sqrt{3}$,b=1,B=$\frac{π}{6}$,則△ABC的面積等于( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{2}$或$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知曲線f(x)=$\frac{a+lnx}{x}$在點(diǎn)(e,f(e))處切線的斜率為-e-2
(1)若函數(shù)f(x)在[m,m+1]上存在極值,求實(shí)數(shù)m的取值范圍;
(2)求證:當(dāng)x>1時(shí),$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$θ∈(0,\frac{π}{2})$,若直線xcosθ+2y+1=0與直線x-ysin2θ-3=0垂直,則sinθ等于( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.“a=b”是“a2=b2”成立的充分不必要條件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”)

查看答案和解析>>

同步練習(xí)冊(cè)答案