在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是橢圓數(shù)學(xué)公式上的一個(gè)動(dòng)點(diǎn),求S=x+y的最大值.

解:因橢圓的參數(shù)方程為(?為參數(shù))
故可設(shè)動(dòng)點(diǎn)P的坐標(biāo)為,其中0≤?<2π.
因此
所以,當(dāng)時(shí),S取最大值2.
分析:先根據(jù)橢圓的標(biāo)準(zhǔn)方程進(jìn)行三角代換表示橢圓上任意一點(diǎn),然后利用三角函數(shù)的輔助角公式進(jìn)行化簡(jiǎn),即可求出所求.
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì)及參數(shù)方程的問題.考查了學(xué)生綜合分析問題和解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)P到點(diǎn)F(3,0)的距離的4倍與它到直線x=2的距離的3倍之和記為d,當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),d恒等于點(diǎn)P的橫坐標(biāo)與18之和
(Ⅰ)求點(diǎn)P的軌跡C;
(Ⅱ)設(shè)過(guò)點(diǎn)F的直線I與軌跡C相交于M,N兩點(diǎn),求線段MN長(zhǎng)度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)P(
1
2
,cos2θ)在角α的終邊上,點(diǎn)Q(sin2θ,-1)在角β的終邊上,且
OP
OQ
=-
1
2

(1)求cos2θ;
(2)求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)P的直角坐標(biāo)為(1,-
3
)
、若以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則點(diǎn)P的極坐標(biāo)可以是( 。
A、(1,-
π
3
)
B、(2,
3
)
C、(2,-
π
3
)
D、(2,-
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•太原模擬)在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是橢圓
x23
+y2=1上的一個(gè)動(dòng)點(diǎn),則S=x+y的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)_P到定點(diǎn)F(-1,0)的距離的兩倍和它到定直線x=-4的距離相等.
(Ⅰ)求點(diǎn)P的軌跡C的方程,并說(shuō)明軌跡C是什么圖形;
(Ⅱ)已知點(diǎn)Q(l,1),直線l:y=x+m(m∈R)和軌跡C相交于A、B兩點(diǎn),是否存在實(shí)數(shù)m,使△ABQ的面積S最大?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案