數(shù)學(xué)公式若f[f(-2)]=2則n=________.


分析:本題應(yīng)首先將等式f[f(-2)]=2具體化,得到9n-1=2,解方程即可.
解答:f(-2)=9cos(-2π)=9×1=9,
所以f(f(-2))=f(9)=9n-1=2,
即:
點(diǎn)評(píng):本題考查分段函數(shù)的概念.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的:“不動(dòng)點(diǎn)”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點(diǎn)”.函數(shù)f(x)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設(shè)函數(shù)f(x)=3x+4,求集合A和B,并分析能否根據(jù)(1)(2)中的結(jié)論判斷A=B恒成立?若能,請(qǐng)給出證明,若不能,請(qǐng)舉以反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=(m-1)x2+6mx+2是偶函數(shù),則f(0),f(1),f(-2)從小到大的順序?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省百所重點(diǎn)高中高三(上)段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

對(duì)于函數(shù)f(x),若f(x)=x,則稱x為f(x)的:“不動(dòng)點(diǎn)”;若f[f(x)]=x,則稱x為f(x)的“穩(wěn)定點(diǎn)”.函數(shù)f(x)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設(shè)函數(shù)f(x)=3x+4,求集合A和B,并分析能否根據(jù)(1)(2)中的結(jié)論判斷A=B恒成立?若能,請(qǐng)給出證明,若不能,請(qǐng)舉以反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省百所重點(diǎn)高中高三(上)段考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

對(duì)于函數(shù)f(x),若f(x)=x,則稱x為f(x)的:“不動(dòng)點(diǎn)”;若f[f(x)]=x,則稱x為f(x)的“穩(wěn)定點(diǎn)”.函數(shù)f(x)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設(shè)函數(shù)f(x)=3x+4,求集合A和B,并分析能否根據(jù)(1)(2)中的結(jié)論判斷A=B恒成立?若能,請(qǐng)給出證明,若不能,請(qǐng)舉以反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省百所重點(diǎn)高中高三(上)段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

對(duì)于函數(shù)f(x),若f(x)=x,則稱x為f(x)的:“不動(dòng)點(diǎn)”;若f[f(x)]=x,則稱x為f(x)的“穩(wěn)定點(diǎn)”.函數(shù)f(x)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設(shè)函數(shù)f(x)=3x+4,求集合A和B,并分析能否根據(jù)(1)(2)中的結(jié)論判斷A=B恒成立?若能,請(qǐng)給出證明,若不能,請(qǐng)舉以反例.

查看答案和解析>>

同步練習(xí)冊(cè)答案