已知兩圓x2+y2=9和(x-2)2+(y-1)2=16相交于A,B兩點,則直線AB的方程是
2x+y+1=0
2x+y+1=0
分析:兩圓的方程相減,可得直線AB的方程.
解答:解:∵兩圓x2+y2=9和(x-2)2+(y-1)2=16相交于A,B兩點,
∴兩方程相減,可得直線AB的方程為2x+y+1=0
故答案為:2x+y+1=0
點評:本題考查圓與圓的位置關(guān)系,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩圓x2+y2=4,x2+(y-8)2=4,若直線y=
5
2
x+b
在兩圓之間通過,則實數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩圓x2+y2-2x+10y-24=0和 x2+y2+2x+2y-8=0
(1)判斷兩圓的位置關(guān)系;
(2)求公共弦所在的直線方程;
(3)求公共弦的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩圓x2+y2=1和x2+y2-6x-8y+9=0,那么這兩個圓的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩圓x2+y2=1和x2+y2-6x-8y+9=0,那么這兩個圓的位置關(guān)系是
 

查看答案和解析>>

同步練習(xí)冊答案