在邊長為1的正三角形ABC中,
BC
=
a
,
AB
=
c
CA
=
b
,則
a
b
+
b
c
+
c
a
=(  )
分析:根據(jù)題中等邊三角形邊長為1,利用向量數(shù)量積的公式加以計算,可得
a
b
=
b
c
=
c
a
=-
1
2
,由此即可得到
a
b
+
b
c
+
c
a
的值.
解答:解:∵正△ABC的邊長為1,
BC
=
a
,
CA
=
b
,
a
b
=
BC
CA
=
|BC|
|CA|
cos120°
=1×1×(-
1
2
)=-
1
2
,
同理可得
b
c
=
c
a
=-
1
2
,
a
b
+
b
c
+
c
a
=-
3
2
=-1.5.
故選:B
點評:本題在等邊三角形中求向量數(shù)量積的和,著重考查了平面向量數(shù)量積的定義及其運算性質、等邊三角形的性質等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在邊長為1的正三角形ABC中,設
BC
=
a
,
AB
=
c
AC
=
b
,則
a
b
+
b
c
+
c
a
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為1的正三角形ABC中,
BD
=
1
3
BA
,E是CA的中點,則
CD
BE
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為1的正三角形ABC中,
BD
=x
BA
,
CE
=y
CA
,x>0,y>0,且x+y=1,則
CD
BE
的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣元二模)在邊長為1的正三角形ABC中,
AB
BC
+
BC
CA
+
CA
AB
=
-
3
2
-
3
2

查看答案和解析>>

同步練習冊答案