命題P:?x∈R,x2+1≥2x,則¬P為( )
A.?x∈R,x2+l<2
B.?x∈R,x2+1≤2
C.?x∈R,x2+l≥2
D.?x∈R.x2+1<2
【答案】分析:本題中的命題是一個全稱命題,其否定是特稱命題,依據(jù)全稱命題的否定書寫形式寫出命題的否定即可
解答:解:命題P:?x∈R,x2+1≥2x,
則¬P為?x∈R.x2+1<2x
故選D
點(diǎn)評:本題考查命題的否定,解題的關(guān)鍵是掌握并理解命題否定的書寫方法規(guī)則,全稱命題的否定是特稱命題,特稱命題的否定是全稱命題,書寫時注意量詞的變化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、已知命題 p:?x∈R,x≥1,那么命題?p為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2、已知命題p:?x∈R,|x|≥0,那么命題?p為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題 p:?x∈R,x≥2,那么命題?p為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“?x∈R,|x-2|<3”,那么?p是( 。
A、?x∈R,|x-2|>3B、?x∈R,|x-2|≥3C、?x∈R,|x-2|<3D、?x∈R,|x-2|≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知命題p:?x∈R,|x|≥0,那么命題?p為(  )
A.?x∈R,|x|≤0B.?x∈R,|x|≤0C.?x∈R,|x|<0D.?x∈R,|x|<0

查看答案和解析>>

同步練習(xí)冊答案