已知圓C1:x2+y2=1與圓C2:(x-2)2+(y-4)2=5,過動(dòng)點(diǎn) P(a,b)分別作圓C1,圓C2的切線PM,PN( M、N分別為切點(diǎn)),若PM=PN,則(a-5)2+(b+1)2的最小值是
 
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:根據(jù)條件PM=PN,求出P的軌跡方程,(a-5)2+(b+1)2的幾何意義為P到定點(diǎn)(5,-1)的距離的平方,即可得到結(jié)論.
解答: 解:∵過動(dòng)點(diǎn) P(a,b)分別作圓C1,圓C2的切線PM,PN( M、N分別為切點(diǎn)),若PM=PN,
∴|PC1|2-1=|PC2|2-5,
即a2+b2-1=(a-2)2+(b-4)2-5,
即a+2b-4=0,即動(dòng)點(diǎn)P(a,b)在直線x+2y-4=0上,
(a-5)2+(b+1)2的幾何意義為P到定點(diǎn)(5,-1)的距離的平方,
則點(diǎn)(5,-1)到直線x+2y-4=0的距離為
|5+2×(-1)-4|
1+22
=
5
5
,
故(a-5)2+(b+1)2的最小值為
1
5
,
故答案為:
1
5
點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系的應(yīng)用,以及點(diǎn)到直線的距離公式的應(yīng)用,利用距離的幾何意義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一條直線與拋物線y2=2px(p>0)交于A、B兩點(diǎn),且OA⊥OB,F(xiàn)為拋物線的焦點(diǎn),若△ABO與△AFO面積之和的最小值為50
5
,則拋物線的方程為( 。
A、y2=20x
B、y2=10x
C、y2=5x
D、y2=
5
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)左支上一點(diǎn),F(xiàn)1、F2是雙曲線的左、右兩個(gè)焦點(diǎn),且PF1⊥PF2,PF2與兩條漸近線相交M,N兩點(diǎn)(如圖),點(diǎn)N恰好平分線段PF2,則雙曲線的離心率是( 。
A、
2
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-e-x
(1)判斷函數(shù)f(x)的奇偶性;
(2)若函數(shù)f(x)在區(qū)間(a-1,a+1)上存在零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x+1
2x
和函數(shù)g(x)=2x-2-x
(1)判斷h(x)=
f(x)
g(x)
的奇偶性,并求其單調(diào)區(qū)間;
(2)若函數(shù)h(x)=f(x)+λg(x)是R上的增函數(shù),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i為虛數(shù)單位,則復(fù)數(shù)
3-4i
i
=(  )
A、-4-3iB、-4+3i
C、4+3iD、4-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫正弦,余弦函數(shù)在[-2π,2π]的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-y2=1(a>0)的離心率為2,則該雙曲線的漸近線方程為( 。
A、y=±x
B、y=±3x
C、y=±
3
3
x
D、y=±
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p是r的充分而不必要條件,q是r的充分條件,s是r的必要條件,q是s的必要條件.現(xiàn)有下列命題:
(1)s是q的充分條件
(2)p是q的充分而不必要條件
(3)r是q的必要而不充分條件
(4)¬p是¬s的必要而不充分條件
其中的真命題有
 

查看答案和解析>>

同步練習(xí)冊(cè)答案