【題目】函數(shù)f(x)是定義在R上的奇函數(shù),給出下列命題:
①f(0)=0;
②若f(x)在(0,+∞)上有最小值為﹣1,則f(x)在(﹣∞,0)上有最大值1;
③若f(x)在[1,+∞)上為增函數(shù),則f(x)在(﹣∞,﹣1]上為減函數(shù);
④若x>0,f(x)=x2﹣2x;則x<0時(shí),f(x)=﹣x2﹣2x.
其中所有正確的命題序號(hào)是

【答案】①②④
【解析】解:由函數(shù)f(x)是定義在R上的奇函數(shù),可得f(﹣0)=﹣f(0)即f(0)=0
①f(0)=0;正確
②若f(x)在(0,+∞)上有最小值為﹣1,則根據(jù)奇函數(shù)的圖形關(guān)于原點(diǎn)對(duì)稱可在f(x)在(﹣∞,0)上有最大值1;正確
③若f(x)在[1,+∞)上為增函數(shù),則根據(jù)奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性可知f(x)在(﹣∞,﹣1]上為增函數(shù);錯(cuò)誤
④若x>0,f(x)=x2﹣2x;則x<0時(shí),﹣x>0,f(x)=﹣f(﹣x)=﹣[(﹣x)2﹣2(﹣x)]=﹣x2﹣2x.正確
所以答案是①②④
【考點(diǎn)精析】認(rèn)真審題,首先需要了解命題的真假判斷與應(yīng)用(兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系),還要掌握函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三個(gè)數(shù)70.8 , 0.87 , log0.87的大小順序是(
A.0.87<log0.87<70.8
B.0.87<70.8<log0.87
C.log0.87<70.8<0.87
D.log0.87<0.87<70.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c為不全相等的實(shí)數(shù),P=a2+b2+c2+3,Q=2(a+b+c),則P與Q的大小關(guān)系是( )
A.P>Q
B.P≥Q
C.P<Q
D.P≤Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)n棱柱有f(n)個(gè)對(duì)角面,則(n+1)棱柱的對(duì)角面的個(gè)數(shù)f(n+1)等于( )
A.f(n)+n+1
B.f(n)+n
C.f(n)+n-1
D.f(n)+n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記集合A{x|xa0},B{y|ysinx,xR},若0AB,則a的取值范圍是(  )

A. (0) B. (,0]

C. [0,+) D. (0,+)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,∠A=30°,∠B=60°,求證:a<b. 證明:因?yàn)椤螦=30°,∠B=60°,所以∠A<∠B.
所以a<b.其中,劃線部分是演繹推理的( )
A.大前提
B.小前提
C.結(jié)論
D.三段論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《論語(yǔ)·子路》篇中說(shuō):“名不正,則言不順;言不順,則事不成;事不成,則禮樂不興;禮樂不興,則刑罰不中;刑罰不中,則民無(wú)所措手足;所以,名不正,則民無(wú)所措手足.”上述推理用的是( )
A.類比推理
B.歸納推理
C.演繹推理
D.一次三段論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠一月份的產(chǎn)值為15萬(wàn)元,第一季度的總產(chǎn)值是95萬(wàn)元,設(shè)月平均增長(zhǎng)率為x , 則可列方程為(
A.95=15(1+x2
B.15(1+x3=95
C.15(1+x)+15(1+x2=95
D.15+15(1+x)+15(1+x2=95

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·呼和浩特一模)已知集合M={x|x2-4x>0},N={x|m<x<8},若MN={x|6<x<n},則mn=(  )

A. 10 B. 12 C. 14 D. 16

查看答案和解析>>

同步練習(xí)冊(cè)答案