(本小題滿分12)如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,點(diǎn)D是AB的中點(diǎn)
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求二面角的平面角的正切值.
(Ⅰ)證明:直三棱柱ABC-A1B1C1,底面三邊長AC=3,BC=4,AB=5,
∴ AC⊥BC, …………………1分
又 AC⊥,且
∴ AC⊥平面BCC1,又平面BCC1 ……………………………………3分
∴ AC⊥BC1 ………………………………………………………………4分
(Ⅱ)解法一:取中點(diǎn),過作于,連接 …………5分
是中點(diǎn),
∴ ,又平面
∴平面,
又平面,平面
∴
∴ 又且
∴平面,平面 ………7分
∴ 又
∴是二面角的平面角 ……………………………………8分
AC=3,BC=4,AA1=4,
∴在中,,,
∴ …………………………………………11分
∴二面角的正切值為 …………………………………………12分
解法二:以分別為軸建立如圖所示空間直角坐標(biāo)系…………5分
AC=3,BC=4,AA1=4,
∴, ,,,
∴,
平面的法向量,&n
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是 AB、PC的中點(diǎn).
(1) 求證:EF∥平面PAD;
(2) 求證:EF⊥CD;
(3) 若∠PDA=45°,求EF與平面ABCD所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,在直三棱柱ABC-A1B1C1中,點(diǎn)D、E分別在邊BC、
B1C1上,CD=B1E=AC,ÐACD=60°.
求證:(1)BE∥平面AC1D;
(2)平面ADC1⊥平面BCC1B1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,兩條異面直線AB,CD與三個(gè)平行平面α,β,γ分別相交于A,E,B及
C,F,D,又AD、BC與平面β的交點(diǎn)為H,G.
求證:四邊形EHFG為平行四邊形。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)如圖,四棱錐P—ABCD的底面是AB=2,BC=的矩形,側(cè)面PAB
是等邊三角形,且側(cè)面PAB⊥底面ABCD
(I)證明:側(cè)面PAB⊥側(cè)面PBC;
(II)求側(cè)棱PC與底面ABCD所成的角;
(III)求直線AB與平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱中,,,分別為,的中點(diǎn),四邊形是邊長為的正方形.
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)·(2b)=-2,則x=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com