20.集合A={1,3,a},B={1,a2},問是否存在這樣的實數(shù)a,使得B⊆A,且A∩B={1,a}.若存在,求出實數(shù)a的值;若不存在,說明理由.

分析 根據(jù)并集的定義可得出a=±$\sqrt{3}$,然后驗證是否滿足A∩B={1,a}即可.

解答 解:由A={1,3,a},B={1,a2},B⊆A,得a2=3.或a2=a.
當(dāng)a2=3時,a=±$\sqrt{3}$,此時A∩B≠{1,a};
當(dāng)a2=a時,a=0或a=1,
a=0時,A∩B={1,0};
a=1時,A∩B≠{1,a}.
綜上所述,存在這樣的實數(shù)a=0,使得B⊆A,且A∩B={1,a}.

點(diǎn)評 此題考查了交集和并集的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=|x2-4|+a|x-2|,x∈[-3,3].若f(x)的最大值是0,則實數(shù)a的取值范圍是(-∞,-5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知直線ax+3y+3=0和直線x+(a-2)y+1=0垂直,則a的值為$a=\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實數(shù)x,y滿足方程(x-2)2+y2=3,則$\frac{y}{x}$的最小值-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,如果2b=a+c,∠B=30°,△ABC的面積為$\frac{3}{2}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)全集U={1,2,3,4,5,6,7},A={3,5},B={4,6,7},則(∁UA)∩(∁UB)=( 。
A.{1,2,3}B.{1,2}C.{1,3}D.{2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知|$\overrightarrow a$|=1,|$\overrightarrow b$|=2,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,若k$\overrightarrow a$+$\overrightarrow b$與$\overrightarrow b$垂直,則k的值為( 。
A.-4B.4C.-4$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-3x2+(8-a)x-5-a,若存在唯一的正整數(shù)x0,使得f(x0)<0,則a的取值范圍是( 。
A.$({\frac{1}{15},\frac{1}{6}}]$B.$({\frac{1}{15},\frac{1}{4}}]$C.$({\frac{1}{6},\frac{1}{4}}]$D.$({\frac{1}{4},\frac{5}{18}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.?dāng)?shù)列{an}滿足:①an<0;②a2•a11=$\frac{8}{27}$;③2an2-anan+1-3an+12=0.
(1)求{an}的通項公式;
(2)設(shè)Tn=|a1•a2•a3…an|,問:是否存在常數(shù)k∈N+,使得Tn≤Tk對于任意n∈N+恒成立?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案