【題目】甲乙二人進(jìn)行定點(diǎn)投籃比賽,已知甲、乙兩人每次投進(jìn)的概率均為,兩人各投一次稱為一輪投籃.

求乙在前3次投籃中,恰好投進(jìn)2個(gè)球的概率;

設(shè)前3輪投籃中,甲與乙進(jìn)球個(gè)數(shù)差的絕對(duì)值為隨機(jī)變量,求的分布列與期望.

【答案】(1);(2)

【解析】

利用n次獨(dú)立重復(fù)實(shí)驗(yàn)恰有k次發(fā)生的概率公式計(jì)算即可;由題意知隨機(jī)變量的取值,計(jì)算對(duì)應(yīng)的概率值,寫(xiě)出分布列,再求出數(shù)學(xué)期望值.

乙在前3次投籃中,恰好投進(jìn)2個(gè)球?yàn)槭录?/span>A,

答:乙在前3次投籃中,恰好投進(jìn)2個(gè)球的概率為;

設(shè)前3輪投籃中,甲與乙進(jìn)球個(gè)數(shù)差的絕對(duì)值為隨機(jī)變量,

的取值為01,2,3;

設(shè)前3輪投籃中,甲進(jìn)球個(gè)數(shù)為X,則X的取值為0,12,3,

計(jì)算,

,

所以,

,

,

所以的分布列為;

0

1

2

3

P

數(shù)學(xué)期望為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公差不為0的等差數(shù)列的前三項(xiàng)和為6,且成等比數(shù)列

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),數(shù)列的前項(xiàng)和為,求使的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某銀行對(duì)某市最近5年住房貸款發(fā)放情況(按每年6月份與前一年6月份為1年統(tǒng)計(jì))作了統(tǒng)計(jì)調(diào)查,得到如下數(shù)據(jù):

年份

2014

2015

2016

2017

2018

貸款(億元)

50

60

70

80

100

(1)將上表進(jìn)行如下處理:,

得到數(shù)據(jù):

1

2

3

4

5

0

1

2

3

5

試求的線性回歸方程,再寫(xiě)出的線性回歸方程.

(2)利用(1)中所求的線性回歸方程估算2019年房貸發(fā)放數(shù)額.

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列事件是隨機(jī)事件的是( 。

當(dāng)x>10時(shí),;當(dāng)xR,x2+x0有解

當(dāng)aR關(guān)于x的方程x2+a0在實(shí)數(shù)集內(nèi)有解;當(dāng)sinα>sinβ時(shí),α>β

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在實(shí)數(shù)集上的奇函數(shù),且當(dāng)時(shí), .

(Ⅰ)求函數(shù)上的解析式;

(Ⅱ)判斷上的單調(diào)性;

(Ⅲ)當(dāng)取何值時(shí),方程上有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某區(qū)有一塊空地,其中,.當(dāng)?shù)貐^(qū)政府規(guī)劃將這塊空地改造成一個(gè)旅游景點(diǎn),擬在中間挖一個(gè)人工湖,其中都在邊上,且,挖出的泥土堆放在地帶上形成假山,剩下的地帶開(kāi)設(shè)兒童游樂(lè)場(chǎng).為安全起見(jiàn),需在的周?chē)惭b防護(hù)網(wǎng).

1)當(dāng)時(shí),求防護(hù)網(wǎng)的總長(zhǎng)度;

2)若要求挖人工湖用地的面積是堆假山用地的面積的倍,試確定的大;

3)為節(jié)省投入資金,人工湖的面積要盡可能小,問(wèn)如何設(shè)計(jì)施工方案,可使的面積最。孔钚∶娣e是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面上一個(gè)圓可以將平面分成兩個(gè)部分,兩個(gè)圓最多可以將平面分成4個(gè)部分,設(shè)平面上個(gè)圓最多可以將平面分成個(gè)部分.

的值;

猜想的表達(dá)式并證明;

證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線, (為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的直角坐標(biāo)方程為.

(Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為、,求的取值范圍.

【答案】I;(II.

【解析】試題分析:(Ⅰ)將由代入,化簡(jiǎn)即可得到曲線的極坐標(biāo)方程;(Ⅱ)將的參數(shù)方程代入,得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理結(jié)合輔助角公式,由三角函數(shù)的有界性可得結(jié)果.

試題解析:(Ⅰ)由,得,即

所以曲線的極坐標(biāo)方程為

II)將的參數(shù)方程代入,得

, 所以,又,

所以,且,

所以,

,得,所以.

的取值范圍是.

型】解答
結(jié)束】
23

【題目】已知、、均為正實(shí)數(shù).

(Ⅰ)若,求證:

(Ⅱ)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)關(guān)于x的函數(shù).

1)當(dāng)時(shí),求的值域;

2)若不等式對(duì)恒成立,求實(shí)數(shù)m的取值范圍;

3)若函數(shù)3個(gè)零點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案