已知與曲線C: x2+y2-2x-2y+1=0相切的直線l與x軸、y軸的正半軸交于兩點(diǎn)A、B,O為原點(diǎn),|OA|=a,|OB|=b(a>2,b>2)

(1)求證:曲線C與直線l相切的條件是(a-2)(b-2)=2 ;

(2)求ΔAOB面積的最小值。

(1)證明見(jiàn)解析(2)


解析:

(1)直線l的方程為

即bx+ay-ab=0

圓心O到直線l的距離d=,

當(dāng)d=1時(shí),直線與圓相切,

=1

整理得(a-2)(b-2)=2

所以曲線C與直線l相切的條件是(a-2)(b-2)=2.

(2)

當(dāng)且僅當(dāng)a=2+時(shí)等號(hào)成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知與曲線C:x2+y2-2x-2y+1=0相切的直線l分別交x軸、y軸于A(a,0)、B(0,b)兩點(diǎn)(a>2,b>2),O為原點(diǎn).
(1)求證:(a-2)(b-2)=2;
(2)求線段AB中點(diǎn)的軌跡方程;
(3)求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知與曲線C:x2+y2-2x-2y+1=0相切的直線l分別交x、y軸于A、B兩點(diǎn),O為原點(diǎn),|OA|=a,|OB|=b(a>2,b>2).
(1)求證:若曲線C與直線l相切,則有(a-2)(b-2)=2;
(2)求線段AB中點(diǎn)的軌跡方程;
(3)求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知與曲線C:x2+y2-2x-2y+1=0相切的直線l交x,y的正半軸與A、B兩點(diǎn),O為原點(diǎn),|OA|=a,|OB|=b,(a>2,b>2).
(1)求線段AB中點(diǎn)的軌跡方程;
(2)求ab的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知與曲線C:x2+y2-2x-2y+1=0相切的直線l交x軸、y軸于A、B兩點(diǎn),O為原點(diǎn),且|OA|=a,|OB|=b,(a>2,b>2).
(1)求證:曲線C與直線l相切的條件是(a-2)(b-2)=2;
(2)求線段AB中點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案