【題目】某旅游為了解2015年國(guó)慶節(jié)期間參加某境外旅游線路的游客的人均購(gòu)物消費(fèi)情況,隨機(jī)對(duì)50人做了問(wèn)卷調(diào)查,得如下頻數(shù)分布表:
人均購(gòu)物消費(fèi)情況 | [0,2000] | (2000,4000] | (4000,6000] | (6000,8000] | (8000,10000] |
額數(shù) | 15 | 20 | 9 | 3 | 3 |
附:臨界值表參考公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= ,其中n=a+b+c+d.
(1)做出這些數(shù)據(jù)的頻率分布直方圖并估計(jì)次境外旅游線路游客的人均購(gòu)物的消費(fèi)平均值;
(2)在調(diào)查問(wèn)卷中有一項(xiàng)是“您會(huì)資助失學(xué)兒童的金額?”,調(diào)查情況如表,請(qǐng)補(bǔ)全如表,并說(shuō)明是否有95%以上的把握認(rèn)為資助數(shù)額多于或少于500元和自身購(gòu)物是否到4000元有關(guān)?
人均購(gòu)物消費(fèi)不超過(guò)4000元 | 人均購(gòu)物消費(fèi)超過(guò)4000元 | 合計(jì) | |
資助超過(guò)500元 | 30 | ||
資助不超過(guò)500元 | 6 | ||
合計(jì) |
【答案】
(1)解:作出頻率分布直方圖如圖所示:
人均購(gòu)物消費(fèi)平均值 =(1000×0.00015+3000×0.0002+5000×0.00009+7000×0.00003+9000×0.00003)×2000=3360.
(2)解:2×2列聯(lián)表如下:
人均購(gòu)物消費(fèi) 不超過(guò)4000元 | 人均購(gòu)物消費(fèi) 超過(guò)4000元 | 合計(jì) | |
資助超過(guò)500元 | 30 | 9 | 39 |
資助不超過(guò)500元 | 5 | 6 | 11 |
合計(jì) | 35 | 15 | 50 |
K2= =4.046>3.841.
∴由95%的把握認(rèn)為資助數(shù)額多余或少于500元與自身購(gòu)物是否到4000元有關(guān)
【解析】(1)根據(jù)消費(fèi)情況計(jì)算各組的頻率及頻率分布直方圖的高度作圖;(2)列聯(lián)表計(jì)算K2 , 根據(jù)附表進(jìn)行判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是線段EF的中點(diǎn).
(1)求證AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大;
(3)試在線段AC上一點(diǎn)P,使得PF與CD所成的角是60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下表為函數(shù)部分自変量取值及其對(duì)應(yīng)函數(shù)值,為了便于研究,相關(guān)函數(shù)值取非整數(shù)值時(shí),取值精確到0.01.
0.61 | -0.59 | -0.56 | -0.35 | 0 | 0.26 | 0.42 | 1.57 | 3.27 | |
0.07 | 0.02 | -0.03 | -0.22 | 0 | 0.21 | 0.20 | -10.04 | -101.63 |
據(jù)表中數(shù)據(jù),研究該函數(shù)的一些性質(zhì);
(1)判斷函數(shù)的奇偶性,并證明;
(2)判斷函數(shù)在區(qū)間[0.55,0.6]上是否存在零點(diǎn),并說(shuō)明理由;
(3)判斷的正負(fù),并證明函數(shù)在上是單調(diào)遞減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校有150名學(xué)生參加了中學(xué)生環(huán)保知識(shí)競(jìng)賽,為了解成績(jī)情況,現(xiàn)從中隨機(jī)抽取50名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)(所有學(xué)生成績(jī)均不低于60分).請(qǐng)你根據(jù)尚未完成的頻率分布表,解答下列問(wèn)題:
(1)寫(xiě)出M 、N 、p、q(直接寫(xiě)出結(jié)果即可),并作出頻率分布直方圖;
(2)若成績(jī)?cè)?0分以上學(xué)生獲得一等獎(jiǎng),試估計(jì)全校所有參賽學(xué)生獲一等獎(jiǎng)的人數(shù);
(3)現(xiàn)從所有一等獎(jiǎng)的學(xué)生中隨機(jī)選擇2名學(xué)生接受采訪,已知一等獎(jiǎng)獲得者中只有2名女生,求恰有1名女生接受采訪的概率.
分組 | 頻數(shù) | 頻率 | |
第1組 | [60,70) | M | 0.26 |
第2組 | [70,80) | 15 | p |
第3組 | [80,90) | 20 | 0.40 |
第4組 | [90,100] | N | q |
合計(jì) | 50 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x、y滿足約束條件 ,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為7,則 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分) 命題實(shí)數(shù)x滿足(其中),命題實(shí)數(shù)滿足
(Ⅰ)若,且為真,求實(shí)數(shù)的取值范圍;
(Ⅱ)若是 的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有如下幾個(gè)結(jié)論: ①相關(guān)指數(shù)R2越大,說(shuō)明殘差平方和越小,模型的擬合效果越好; ②回歸直線方程:,一定過(guò)樣本點(diǎn)的中心:③殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明選用的模型比較合適; ④在獨(dú)立性檢驗(yàn)中,若公式,中的|ad-bc|的值越大,說(shuō)明“兩個(gè)分類(lèi)變量有關(guān)系”的可能性越強(qiáng).其中正確結(jié)論的個(gè)數(shù)有( 。﹤(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若圖所示,將若干個(gè)點(diǎn)擺成三角形圖案,每條邊(包括兩個(gè)端點(diǎn))n(n>1,n∈N*)個(gè)點(diǎn),相應(yīng)的圖案中總的點(diǎn)數(shù)記為an , 則 + + +…+ = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=sin2x的圖象先向左平移 個(gè)單位長(zhǎng)度,然后將所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變),則所得到的圖象對(duì)應(yīng)函數(shù)解析式為( )
A.
B.y=2cos2x
C.y=2sin2x
D.y=cosx
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com