已知函數(shù)f(x)=
x
ax+b
(a、b是非零實(shí)常數(shù))滿足f(1)=
1
2
,且方程f(x)=x有且僅有一個(gè)實(shí)數(shù)解.
(1)求a、b的值;
(2)在直角坐標(biāo)系中,求定點(diǎn)A(0,2)到函數(shù)f(x)圖象上任意一點(diǎn)P(x,y)的距離|AP|的最小值.
(3)當(dāng)x∈(
1
4
1
2
]時(shí),不等式(x+1)•f(x)>m(m-x)-1恒成立,求實(shí)數(shù)m的取值范圍.
(1)∵f(x)=
x
ax+b
,且f(1)=
1
2

1
a+b
=
1
2
,即a+b=2;
x
ax+b
=x有且僅有一個(gè)實(shí)數(shù)解,
∴x(
1-ax-b
ax+b
)=0有且僅有一個(gè)實(shí)數(shù)解,為0.
∴b=1,a=1.
∴f(x)=
x
x+1

(2)由(1)知,P(x,
x
x+1
),
|AP|2=(
x
x+1
-2)
2
+x2
=(
-x-2
x+1
)
2
+x2
=(
1
x+1
+1)
2
+[(x+1)-1]2
令t=
1
x+1

則|AP|2=t2+2t+1+(
1
t
)
2
-
2
t
+1
=(t-
1
t
)
2
+2(t-
1
t
)+4,
令r=t-
1
t

則|AP|2=r2+2r+4=(r+1)2+3,
∴當(dāng)r=-1,即t-
1
t
=-1,t=
-1±
5
2
時(shí),|AP|的最小值為
3

(3)∵x∈(
1
4
,
1
2
],
∴x+1>
5
4
>0,
∴(x+1)•f(x)>m(m-x)-1恒成立?x>m(m-x)-1恒成立?(1+m)x>m2-1,
當(dāng)m+1>0,即m>-1時(shí),
有m-1<x恒成立?m<x+1?m<(x+1)min,
∴-1<m<
5
4
;
當(dāng)m+1<0,即m<-1時(shí),同理可得m>(x+1)max=
3
2

∴此時(shí)m不存在.
綜上得-1<m<
5
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案